Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

868 results about "Dioptre" patented technology

A dioptre (British spelling) or diopter (American spelling) is a unit of measurement of the optical power of a lens or curved mirror, which is equal to the reciprocal of the focal length measured in metres. (1 dioptre = 1 m⁻¹.) It is thus a unit of reciprocal length. For example, a 3-dioptre lens brings parallel rays of light to focus at ¹⁄₃ metre. A flat window has an optical power of zero dioptres, and does not cause light to converge or diverge. Dioptres are also sometimes used for other reciprocals of distance, particularly radii of curvature and the vergence of optical beams.

Surgical correction of human eye refractive errors by active composite artificial muscle implants

Surgical correction of human eye refractive errors such as presbyopia, hyperopia, myopia, and stigmatism by using transcutaneously inductively energized artificial muscle implants to either actively change the axial length and the anterior curvatures of the eye globe. This brings the retina / macula region to coincide with the focal point. The implants use transcutaneously inductively energized scleral constrictor bands equipped with composite artificial muscle structures. The implants can induce enough accommodation of a few diopters, to correct presbyopia, hyperopia, and myopia on demand. In the preferred embodiment, the implant comprises an active sphinctering smart band to encircle the sclera, preferably implanted under the conjunctiva and under the extraocular muscles to uniformly constrict the eye globe, similar to a scleral buckle band for surgical correction of retinal detachment, to induce active temporary myopia (hyperopia) by increasing (decreasing) the active length of the globe. In another embodiment, multiple and specially designed constrictor bands can be used to enable surgeons to correct stigmatism. The composite artificial muscles are either resilient composite shaped memory alloy-silicone rubber implants in the form of endless active scleral bands, electroactive ionic polymeric artificial muscle structures, electrochemically contractile endless bands of ionic polymers such as polyacrylonitrile (PAN), thermally contractile liquid crystal elastomer artificial muscle structures, magnetically deployable structures or solenoids or other deployable structures equipped with smart materials such as preferably piezocerams, piezopolymers, electroactive and eletrostrictive polymers, magnetostrictive materials, and electro or magnetorheological materials.
Owner:ENVIRONMENTAL ROBOTS

Method of treating the human eye with a wavefront sensor-based ophthalmic instrument

An improved method for treating the eye includes the step of providing an ophthalmic instrument including an integral wavefront sensor. The wavefront sensor measures phase aberrations in reflections directed thereto to characterize aberrations of the eye. The wavefront sensor may be operably coupled to a display device, which displays a graphical representation of the aberrations of the eye. Such graphical representation may include: two dimensional contour maps that graphically depict contribution of pre-specified terms (such as spherical aberration, astigmatism and coma) for the aberrations of the eye, coefficients corresponding to such pre-specified terms that characterize the aberrations of the eye, or predefined two-dimensional icons that provide a general graphical depiction of such pre-specified terms. Such graphical representations provide the practitioner with valuable information characterizing the high order optical errors of the eye (which is far beyond the diopter information typically provided by current ophthalmic instruments) for use in diagnosis and treatment of abnormalities and disease in the eye. In addition, the wavefront sensor may be part of an adaptive optical subsystem that compensates for the phase aberrations measured therein to provide phase-aligned images of the eye for capture by an image capture subsystem. Such images may be used by practitioner in diagnosis and treatment of abnormalities and disease in the eye.
Owner:NORTHROP GRUMMAN SYST CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products