Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

59 results about "Oligonucleotide Arrays" patented technology

Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays

The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support. The ligation phase can be preceded by an amplification process. The present invention also relates to a kit for practicing this method, a method of forming arrays on solid supports, and the supports themselves.
Owner:CORNELL RES FOUNDATION INC

Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays

The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support. The ligation phase can be preceded by an amplification process. The present invention also relates to a kit for practicing this method, a method of forming arrays on solid supports, and the supports themselves.
Owner:CORNELL RES FOUNDATION INC

Methods of enzymatic discrimination enhancement and surface-bound double-stranded DNA

Methods for discriminating between fully complementary hybrids and those that differ by one or more base pairs and libraries of unimolecular, double-stranded oligonucleotides on a solid support. In one embodiment, the present invention provides methods of using nuclease treatment to improve the quality of hybridization signals on high density oligonucleotide arrays. In another embodiment, the present invention provides methods of using ligation reactions to improve the quality of hybridization signals on high density oligonucleotide arrays. In yet another embodiment, the present invention provides libraries of unimolecular or intermolecular, double-stranded oligonucleotides on a solid support. These libraries are useful in pharmaceutical discovery for the screening of numerous biological samples for specific interactions between the double-stranded oligonucleotides, and peptides, proteins, drugs and RNA. In a related aspect, the present invention provides libraries of conformationally restricted probes on a solid support. The probes are restricted in their movement and flexibility using double-stranded oligonucleotides as scaffolding. The probes are also useful in various screening procedures associated with drug discovery and diagnosis. The present invention further provides methods for the preparation and screening of the above libraries.
Owner:AFFYMETRIX INC

Oligonucleotide arrays to monitor gene expression and methods for making and using same

The present invention provides an oligonucleotide array capable of identifying genes and related pathways involved with the induction of a particular phenotype by a cell line, e.g., the genes and related pathways involved with the induction of transgene expression by the cell line. The invention is particularly useful when there is little or no information about the genome of the cell line being studied, because it provides methods for identifying consensus sequences for known and previously undiscovered genes, and for designing oligonucleotide probes to the identified consensus sequences. Additionally, when the array is to be used to determine optimal conditions for expression of a transgene by the cell line, the invention teaches methods of including oligonucleotide probes to transgene sequences in the array. The invention also provides methods of using the array to identify genes and related pathways involved with the induction of a particular cell line phenotype. The invention also provides novel polynucleotides of undiscovered genes (i.e., a gene that had not been sequenced and / or shown to be expressed by CHO cells) and novel polynucleotides involved with the induction of a particular cell phenotype, e.g., increased survival when grown under stressful culture conditions, increased transgene expression, decreased production of an antigen, etc. These novel polynucleotides are termed novel CHO sequences and differential CHO sequences, respectively. The invention also provides genetically engineered expression vectors, host cells, and transgenic animals comprising the novel nucleic acid molecules of the invention. The invention additionally provides antisense and RNAi molecules to the nucleic acid molecules of the invention. The invention further provides methods of using the polynucleotides of the invention.
Owner:WYETH LLC

Methods for determining the genetic affinity of microorganisms and viruses

Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred. A hybridization signal can comprise fluorescence, chemiluminescence, or isotopic labeling, etc.; or sequences in a sample can be detected by direct means, e.g. mass spectrometry. The method's characteristic sequences can also be used to design specific PCR primers. The method uniquely identifies the phylogenetic affinity of an unknown organism without requiring prior knowledge of what is present in the sample. Even if the organism has not been previously encountered, the method still provides useful information about which phylogenetic tree bifurcation nodes encompass the organism.
Owner:TECH LICENSING CO LLC

Methods of enzymatic discrimination enhancement and surface bound double-stranded DNA

Methods for discriminating between fully complementary hybrids and those that differ by one or more base pairs and libraries of unimolecular, double-stranded oligonucleotides on a solid support. In one embodiment, the present invention provides methods of using nuclease treatment to improve the quality of hybridization signals on high density oligonucleotide arrays. In another embodiment, the present invention provides methods of using ligation reactions to improve the quality of hybridization signals on high density oligonucleotide arrays. In yet another embodiment, the present invention provides libraries of unimolecular or intermolecular, double-stranded oligonucleotides on a solid support. These libraries are useful in pharmaceutical discovery for the screening of numerous biological samples for specific interactions between the double-stranded oligonucleotides, and peptides, proteins, drugs and RNA. In a related aspect, the present invention provides libraries of conformationally restricted probes on a solid support. The probes are restricted in their movement and flexibility using double-stranded oligonucleotides as scaffolding. The probes are also useful in various screening procedures associated with drug discovery and diagnosis. The present invention further provides methods for the preparation and screening of the above libraries.
Owner:AFFYMETRIX INC

Methods of enzymatic discrimination enhancement and surface-bound double-stranded DNA

Methods for discriminating between fully complementary hybrids and those that differ by one or more base pairs and libraries of unimolecular, double-stranded oligonucleotides on a solid support. In one embodiment, the present invention provides methods of using nuclease treatment to improve the quality of hybridization signals on high density oligonucleotide arrays. In another embodiment, the present invention provides methods of using ligation reactions to improve the quality of hybridization signals on high density oligonucleotide arrays. In yet another embodiment, the present invention provides libraries of unimolecular or intermolecular, double-stranded oligonucleotides on a solid support. These libraries are useful in pharmaceutical discovery for the screening of numerous biological samples for specific interactions between the double-stranded oligonucleotides, and peptides, proteins, drugs and RNA. In a related aspect, the present invention provides libraries of conformationally restricted probes on a solid support. The probes are restricted in their movement and flexibility using double-stranded oligonucleotides as scaffolding. The probes are also useful in various screening procedures associated with drug discovery and diagnosis. The present invention further provides methods for the preparation and screening of the above libraries.
Owner:AFFYMETRIX INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products