Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

41results about "Recording by physical/electrical perturbations" patented technology

Information recording medium, target and method for manufacturing of information recording medium using the same

An information recording medium of the present invention includes a recording layer whose phase changes by irradiation with a laser beam or application of current. The recording layer contains, as its main component, a composite composed of Ge and Sb that are essential components, and Te that is an optional component. The composite has a composition within a region enclosed by: point (a) (35, 65, 0), point (b) (36.9, 60, 3.1), point (c) (3.2, 60, 36.8), and point (d) (5, 95, 0) in terms of a coordinate (Ge, Sb, Te)=(x, y, z) on the triangular coordinate shown in FIG. 1, where point (b) corresponds to a point at Sb=60 on Ge60Te40—Ge35Sb65, point (c) corresponds to a point at Sb=60 on Te—Ge5Sb95, and the region includes lines extending between point (a) and point (b), point (b) and point (c), point (c) and point (d), and point (d) and point (a).
Owner:PANASONIC CORP

Method and system for magnetic recording using self-organized magnetic nanoparticles

A method and system for magnetic recording using self-organized magnetic nanoparticles is disclosed. The method may include depositing surfactant coated nanoparticles on a substrate, wherein the surfactant coated nanoparticles represent first bits of recorded information. The surfactant coating is then removed from selected of the surfactant coated nanoparticles. The selected nanoparticles with their surfactant coating removed may then be designated to represent second bits of recorded information. The surfactant coated nanoparticles have a first saturation magnetic moment and the selected nanoparticles with the surfactant coating removed have a second saturation magnetic moment. Therefore, by selectively removing the surfactant coating from certain nanoparticles, a write operation for recording the first and second bits of information may be performed. A read operation may be carried out by detecting the different magnetic moments of the surfactant coated nanoparticles and the non-surfactant coated nanoparticles.
Owner:SEAGATE TECH LLC

Information recording medium having pair of electrodes

Disclosed herewith is a method for enabling fast and high density recording of information. A voltage is applied to a recording layer formed between a pair of electrodes. The distance between the pair of electrodes is set wider at one of land and groove areas of a subject optical disk and narrower at the other or the distance is set so that light absorption occurs only in either of the land and groove areas. The optical disk is also provided with a layer of which light absorption spectrum changes according to the application of an electric current, thereby absorbing the light. The new layer may be the recording layer itself or a layer adjacent to the recording layer. Because a heat generates only from a small area of the optical disk at the time of recording, the disk can be turned rapidly and permissively to the auto focusing and tracking offsets, thereby enabling fast and high density recording. The disk can thus be formed with easily selectable multiple layers.
Owner:HITACHI CONSUMER ELECTRONICS CORP

Electric Field Applying Magnetic Recording Method and Magnetic Recording System

A method for writing information on a highly coercive recording medium stably with an electric field applied through a metal probe and with a magnetic field applied from external and an information recording system that employs the method. The recording medium includes a substrate, a first ferromagnetic layer formed on the substrate, a nonmagnetic layer formed on the first ferromagnetic layer, and a second ferromagnetic layer formed on the nonmagnetic layer. The coercivity Hc2 of the second ferromagnetic layer is larger than that Hc1 of the first ferromagnetic layer. A magnetic field H is applied to the magnetic recording medium from a magnetic pole to change the magnetizing direction of the first ferromagnetic layer to a direction of the applied magnetic field, then a positive or negative voltage V is applied between the metal probe and the magnetic recording medium to change the quantum well level energy between the first and second ferromagnetic layers, thereby inducing an exchange magnetic field HE. As a result, the magnetizing direction of the second ferromagnetic layer is changed with both the exchange magnetic field HE and the magnetic field H.
Owner:HITACHI LTD

Method and apparatus for electro-optical disk memory

Methods and apparatus are described for a rewritable disk memory using an electro-optical molecular recording layer. In the manner of nanotechnology, each molecule is an individual multi-position switch having at least two distinct optical characteristic states. Localized electrical field injection is used to switch each molecule to one of at least two bistable position states such that each is representative of a storable data bit.
Owner:HEWLETT PACKARD DEV CO LP

Electron beam applying apparatus and drawing apparatus

An electron beam applying apparatus includes: a thermal field emission type electron source emitting an electron beam; an electrostatic lens disposed immediately below the electron source and acting as a condensing electrode for condensing the electron beam in a first angular aperture emitted by the electron source in a second angular aperture smaller than the first angular aperture; a condenser lens disposed on a downstream side of the electrostatic lens and condensing the electron beam condensed in the second aperture angel by the electrostatic lens in a crossover point; and an objective lens disposed on a downstream side of the condenser lens and condensing the electron beam condensed in the crossover point by the condenser lens on the surface of the material.
Owner:RICOH KK +1

Ultra-high density storage device using phase change diode memory cells and methods of fabrication thereof

An ultra-high density data storage device using phase-change diode memory cells, and having a plurality of emitters for directing beams of directed energy, a layer for forming multiple data storage cells and a layered diode structure for detecting a memory or data state of the storage cells, wherein the device comprises a phase-change data storage layer capable of changing states in response to the beams from the emitters, and a second layer forming one layer in the layered diode structure, the second layer comprising a material containing copper, indium and selenium. A method of forming a diode structure for a phase-change data storage array, having multiple thin film layers adapted to form a plurality of data storage cell diodes, comprises depositing a first diode layer of CuInSe material on a substrate and depositing a second diode layer of phase-change material on the first diode layer.
Owner:HEWLETT PACKARD DEV CO LP

Ultra-high density storage device using phase change diode memory cells and methods of fabrication thereof

An ultra-high density data storage device using phase-change diode memory cells, and having a plurality of emitters for directing beams of directed energy, a layer for forming multiple data storage cells and a layered diode structure for detecting a memory or data state of the storage cells, wherein the device comprises a phase-change data storage layer capable of changing states in response to the beams from the emitters, comprising a material containing copper, indium and selenium. A method of forming a diode structure for a phase-change data storage array, having multiple thin film layers adapted to form a plurality of data storage cell diodes, wherein the method comprises depositing a first diode layer of material on a substrate, and depositing a second diode layer of phase-change material on the first diode layer, the phase-change material containing copper, indium and selenium.
Owner:HEWLETT PACKARD DEV CO LP

Information recording medium and method for manufacturing the same

An information recording medium, 15 capable of recording information by irradiation of light or applying electrical energy, wherein at least one of first and second dielectric layers 102, 106, first interface layer and counter-incident side interface layer 103, 105 is formed from a Si—In—Zr / Hf—O-based material containing at least Si, In, M1 (M1 represents at least one element selected from among Zr and Hf) and oxygen (O), with Si content being 1 atomic % or more. This medium has high recording sensitivity when information is recorded thereon, high overwrite cycle-ability and high signal intensity.
Owner:PANASONIC CORP

Recording medium, image recording apparatus, and image recording set

A recording medium including a first base; a second base; and an image recording layer provided between the first base and the second base, wherein the image recording layer contains electrophoretic particles, a dispersion medium, and a thermoreversible gelling agent, and wherein at least one type of the electrophoretic particles is electret particles is provided.
Owner:RICOH KK

Read/write transducer for a ferroelectric storage medium, and corresponding storage device and method

A transducer for a storage medium has a supporting element positioned over the storage medium with a first head configured to interact with the storage medium and a second head operatively connected to the first head to interact with the storage medium. The second head is carried by the supporting element in a position adjacent to the first head, and the first head and the second head are aligned in a scanning direction. The first head performs the reading of a data item stored in a portion of the storage medium, the reading entailing the deletion of the data item, and the second head performs the rewriting of the data item in the same portion of the storage medium.
Owner:STMICROELECTRONICS SRL

Multiple probe actuation

A method of actuating a plurality of probes. Each probe may be made of two or more materials with different thermal expansion coefficients which are arranged such that when the probe is illuminated by an actuation beam it deforms to move the probe relative to a sample. Energy is delivered to the probes by sequentially illuminating them with an actuation beam via an objective lens in a series of scan sequences. Two or more of the probes are illuminated by the actuation beam in each scan sequence and the actuation beam enters the objective lens at a different angle to an optical axis of the objective lens for each probe which is illuminated in a scan sequence. The actuation beam is controlled so that different amounts of energy are delivered to at least two of the probes by the actuation beam during at least one of the scan sequences.
Owner:INFINITESIMA

Method of producing a data storage medium

The present invention relates a method of producing a data storage medium comprising the steps of: a) coating a layer comprising a polymer material onto at least a part of a template surface thereby to obtain a modified template surface; b) clamping the modified template surface produced in step (a) with a target surface thereby to obtain an assembly; and c) introducing a liquid to an environment of the assembly obtained in step (b) thereby to transfer the layer comprising the polymer material of the modified template surface onto at least an adjacent region on the target surface.
Owner:IBM CORP

Method and system for magnetic recording using self-organized magnetic nanoparticles

A method and system for magnetic recording using self-organized magnetic nanoparticles is disclosed. The method may include depositing surfactant coated nanoparticles on a substrate, wherein the surfactant coated nanoparticles represent first bits of recorded information. The surfactant coating is then removed from selected of the surfactant coated nanoparticles. The selected nanoparticles with their surfactant coating removed may then be designated to represent second bits of recorded information. The surfactant coated nanoparticles have a first saturation magnetic moment and the selected nanoparticles with the surfactant coating removed have a second saturation magnetic moment. Therefore, by selectively removing the surfactant coating from certain nanoparticles, a write operation for recording the first and second bits of information may be performed. A read operation may be carried out by detecting the different magnetic moments of the surfactant coated nanoparticles and the non-surfactant coated nanoparticles.
Owner:SEAGATE TECH LLC

Information recording and reproducing device

According to one embodiment, an information recording and reproducing device includes a recording layer which includes a typical element and a transition element, and stores a state of a first electric resistivity and a state of a second electric resistivity different from the first electric resistivity by a movement of the typical element, and an electrode layer which is disposed at one end of the recording layer to apply a voltage or a current to the recording layer. The recording layer includes a first region which is in contact with the electrode layer and the electrode layer includes a second region which is in contact with the recording layer. The first and second regions are opposite to each other. And the first and second regions include the typical element, and a concentration of the typical element in the first region is higher than that in the second region.
Owner:TOSHIBA MEMORY CORP

Information recording medium and method for manufacturing the same

An information recording medium, 15 capable of recording information by irradiation of light or applying electrical energy, wherein at least one of first and second dielectric layers 102, 106, first interface layer and counter-incident side interface layer 103, 105 is formed from a Si—In—Zr / Hf—O-based material containing at least Si, In, M1 (M1 represents at least one element selected from among Zr and Hf) and oxygen (O), with Si content being 1 atomic % or more. This medium has high recording sensitivity when information is recorded thereon, high overwrite cycle-ability and high signal intensity.
Owner:PANASONIC CORP

Ultra-high density storage device using phase change diode memory cells and methods of fabrication thereof

An ultra-high density data storage device using phase-change diode memory cells, and having a plurality of emitters for directing beams of directed energy, a layer for forming multiple data storage cells and a layered diode structure for detecting a memory or data state of the storage cells, wherein the device comprises a phase-change data storage layer capable of changing states in response to the beams from the emitters, comprising a material containing copper, indium and selenium. A method of forming a diode structure for a phase-change data storage array, having multiple thin film layers adapted to form a plurality of data storage cell diodes, wherein the method comprises depositing a first diode layer of material on a substrate, and depositing a second diode layer of phase-change material on the first diode layer, the phase-change material containing copper, indium and selenium.
Owner:HEWLETT PACKARD DEV CO LP

Digital media created using ion beam technology

An optical medium including an underlayer and a reflective layer, where at least one of the underlayer and the surface layer has surface features thereon representing data, the surface features having been formed by directing pulses of a beam of ions from an ion source onto at least one of the underlayer and the reflective layer in a controlled pattern for creating the surface features
Owner:MARSHALL CHARLES +3

Optical memory device and method of recording/reproducing information by using the same

Provided are optical memory device and a method of recording / reproducing information by using the optical memory device. The optical memory device includes a substrate; a first barrier layer formed on the substrate; a quantum well layer; a second barrier layer; a quantum dot layer; and a third barrier layer. The quantum well layer has an energy band gap which is wider than that of the quantum dot layer, and the second barrier layer has an energy band gap which is wider than that of the quantum well layer, so that electrons in excitons which are generated in the quantum dot layer by light of a certain wavelength are captured by the quantum well layer to record information, and then, recorded information may be erased or reproduced by irradiating light of a certain wavelength to the optical memory device.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products