Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

78results about How to "Enhanced hoop strength" patented technology

Expandable endovascular stent

InactiveUS20050080479A1Minimize amount of materialSubstantial longitudinal flexibility longitudinalStentsBlood vesselsStress concentrationPercent Diameter Stenosis
Disclosed herein is a tubular endovascular stent comprising a plurality of annular segments connected by one or more bridging elements. Each annular segment takes forms of periodic wavelets with a plurality of alternating symmetric peaks and valleys, preferably consisting of circular arc segments of large radii connected tangentially with straight segments to minimize stress concentration when the stent undergoes radial deformation, transverse to the longitudinal axis of the stent. The points of connection between the bridging elements and adjacent annular segments are so designed that deformations of the bridging elements remain negligible as the stent deforms radially, namely, the longitudinal dimension of the stent does not vary during the radial expansion or contraction of the stent. Hence, the radial strength and the longitudinal flexibility of the stent made according to the principles disclosed by the present invention can be independently controlled by the design parameters for the annular segments and bridging elements, without compromising the longitudinal dimensional stability of the stent. Since stress concentration and deformation in the stent can lead to restenosis, stent made from the invention disclosed here can reduce the probability of restenosis.
Owner:FENG JAMES Q +1

Method of bonding a lenticular lens sheet to plastic objects and objects made from same

A method of fabricating plastic objects having an insert of Lenticular lens material integrally bonded or otherwise attached therein. In one embodiment, the method is used to fabricate a container, such as a conical cup, by first manufacturing or providing a sheet of Lenticular material comprising layers of lens material and optical ridges and grooves and an ink layer printed on the flat side of the lens material. To protect the ink from the heat of molten or moldable plastic during later plastic processing, a thermally protective substrate is attached or bonded to the ink layer by using adhesives to attach a plastic substrate or by coating the ink with coating materials that thermally protect the ink from high temperatures. In one embodiment, the protective substrate is applied in a two step process of first placing a plastic hot melt onto a polyester or other material release liner and, after cooling of the hot melt, using heat and pressure to laminate or bond the hot melt plastic to the ink and then removing the liner. Lenticular inserts are cut out of the Lenticular material sheets and the inserts are positioned within a mold where the container is formed by injection, blow, or other molding process. In this step, the substrate acts as a bonding surface as it contacts the molten plastic, melts, and then cools forming a bonding interface with the plastic used to form the container.
Owner:TRAVEL TAGS

Weight-forward composite arrow shaft

An improved arrow shaft comprised of a core of substantially round, very lightweight, porous material, with the porous core having sections that have different diameters at various points along the length of the arrow shaft, with the lightweight core materials being overwrapped with different thickness' of reinforcing materials such that the resulting outside diameter of the finished arrow shaft has substantially parallel surfaces over the entire length of the shaft and the finished shaft has a substantially constant circumference and outside diameter along its entire length. The inventive composite arrow shaft incorporates different thickness' and weights of reinforcement materials, strategically placed along it's length, in a manner that results in providing, in an integral manner, proper front to back balance in the finished arrow, with the proper balance achieved by using the same weight point, point insert, nock, nock insert, and fletching materials, regardless of the length the shaft is cut off at. The preferred embodiment of the inventive arrow shaft includes end sections at each end that have greater thicknesses of reinforcement materials overlaying the core, than at other intermediate sections of the shaft, with the increased reinforcement materials at each end of the shaft serving to increase, in an integral manner, the strength of the shaft in these areas. The preferred embodiment of the inventive arrow shaft also includes at least one other section intermediate the end sections of the shaft that also has greater thicknesses of reinforcement materials along it's length than do some other sections of the shaft that are intermediate the additionally-reinforced end sections.
Owner:SCHAAR JOHN G

Method of bonding a lenticular lens sheet to plastic objects and objects made from same

Abstract of the Disclosure A method of fabricating plastic objects having an insert of Lenticular lens material integrally bonded or otherwise attached therein. In one embodiment, the method is used to fabricate a container, such as a conical cup, by first manufacturing or providing a sheet of Lenticular material comprising layers of lens material and optical ridges and grooves and an ink layer printed on the flat side of the lens material. To protect the ink from the heat of molten or moldable plastic during later plastic processing, a thermally protective substrate is attached or bonded to the ink layer by using adhesives to attach a plastic substrate or by coating the ink with coating materials that thermally protect the ink from high temperatures. In one embodiment, the protective substrate is applied in a two step process of first placing a plastic hot melt onto a polyester or other material release liner and, after cooling of the hot melt, using heat and pressure to laminate or bond the hot melt plastic to the ink and then removing the liner. Lenticular inserts are cut out of the Lenticular material sheets and the inserts are positioned within a mold where the container is formed by injection, blow, or other molding process. In this step, the substrate acts as a bonding surface as it contacts the molten plastic, melts, and then cools forming a bonding interface with the plastic used to form the container.
Owner:REIL JENNIFER +4

Methods of manufacturing plastic objects having bonded lenticular lens-sheets

A method of fabricating plastic objects having an insert of Lenticular lens material integrally bonded or otherwise attached therein. In one embodiment, the method is used to fabricate a container, such as a conical cup, by first manufacturing or providing a sheet of Lenticular material comprising layers of lens material and optical ridges and grooves and an ink layer printed on the flat side of the lens material. To protect the ink from the heat of molten or moldable plastic during later plastic processing, a thermally protective substrate is attached or bonded to the ink layer by using adhesives to attach a plastic substrate or by coating the ink with coating materials that thermally protect the ink from high temperatures. In one embodiment, the protective substrate is applied in a two step process of first placing a plastic hot melt onto a polyester or other material release liner and, after cooling of the hot melt, using heat and pressure to laminate or bond the hot melt plastic to the ink and then removing the liner. Lenticular inserts are cut out of the Lenticular material sheets and the inserts are positioned within a mold where the container is formed by injection, blow, or other molding process. In this step, the substrate acts as a bonding surface as it contacts the molten plastic, melts, and then cools forming a bonding interface with the plastic used to form the container.
Owner:TRAVEL TAGS

Spiral steel pipe with reinforcing rings and manufacturing method of spiral steel pipe

The invention discloses a spiral steel pipe with reinforcing rings and a manufacturing method of the spiral steel pipe. The steel pipe comprises a spiral pipe body formed by spirally winding main steel strips; spiral joints are formed between the adjacent main steel strips of the spiral pipe body; the reinforcing rings are spirally wound on and locked to the outer wall or the inner wall of the spiral pipe body; at the spiral joints, the reinforcing rings are formed by bending narrow steel strips and the sections of the reinforcing rings are circular-arc-shaped, square or trapezoidal. The reinforcing rings are capable of enhancing the overall annular strength of the pipe, the thickness of the pipe can be reduced by more than a half, and the cost can be greatly reduced; meanwhile, the inertia moment of the circumferential section of the pipe is increased exponentially; as a result, the effect of the reinforcing rings is much better than that of a common reinforcement way, and consequently, the deformation problem of a large-diameter steel pipe, in particular a steel pipe of which the diameter is greater than 4m, during production is solved, and a steel pipe with an ultra-large diameter (10m or above) can be produced. Besides, the spiral joints formed between the adjacent sections of the spiral steel pipe are capable of surrounding the reinforcing rings so that the leakage protection at the joints can be strengthened.
Owner:NANJING LIANZHONG CONSTR ENG TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products