Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

57results about How to "Sufficient air flow" patented technology

Respiratory breathing devices, methods and systems

A powered air purifying respirator system for use with at least one filter system includes: a housing including at least one inlet port and at least one outlet port; a motorized air flow system to draw air into the housing via the at least one inlet port; a control system in communicative connection with the motorized air flow system; and a filter system sensor in communicative connection with the control system. The filter system sensor provides information to the control system relating to the type of the at least one filter system upon fluid connection thereof with the housing. The control system can control the motorized air flow system at least in part on the basis of the type of filter system sensed by the filter system sensor. Another powered air purifying respirator system for use with at least one filter system includes: a housing including at least one inlet port and at least one outlet port; a motorized air flow system to draw air into the housing via the at least one inlet port; a control system in communicative connection with the motorized air flow system; and a pressure sensor in communicative connection with the control system to provide information to the control system relating to ambient pressure. The control system can, for example, control the motorized air flow system at least in part on the basis of the information relating to ambient pressure.
Owner:MINE SAFETY APPLIANCES CO +1

Method and apparatus for feeding in and handling waste material

Method for feeding in and for handling waste material in the channel section of a pneumatic wastes conveying system, in which method waste material or recycleable material is fed into a feed-in container (10) from the input aperture (2) of at least two input points (1) of a pneumatic pipe transport system for material and onwards into the channel section (20, 21, 22) between the feed-in container and the material conveying pipe (100), from where the material is conveyed along with the transporting air via the material conveying pipe (100) to the delivery end of the pneumatic material conveying system, where the material is separated from the transporting air. In the method the channel section (20(II), 20(III), 20(IV) . . . (22(II), (22(III), 22(IV)) of at least one second input point is connected to the channel section (20(I), 21(I), 22(I)) of one first input point between the input point (1) and an impeding means (30, 30′), in that in the method at least a part of the material (w1, w2, w3, w4) fed in is acted upon by the combined effect of suction and replacement air in the channel section (20(I), 21(I), 22(I) . . . (20(IV), 21(IV), 22(IV)) by bringing about compression in size in at least a part of the material (w1, w2, w3, w4) being conveyed, by means of an impediment (30) arranged between the conveying pipe (100) and the material (w1, w2, w3, w4) to be handled, or against the impediment, before transportation of the material to the delivery end of the pneumatic transport system for wastes.
Owner:MARICAP OY

Method and apparatus for feeding in and handling waste material

ActiveUS10399799B2Improve material conveying efficiencyEfficiently conveyedRefuse receptaclesBulk conveyorsTransport systemAir separation
Method for feeding in and for handling waste material in the channel section of a pneumatic wastes conveying system, in which method waste material or recycleable material is fed into a feed-in container (10) from the input aperture (2) of at least two input points (1) of a pneumatic pipe transport system for material and onwards into the channel section (20, 21, 22) between the feed-in container and the material conveying pipe (100), from where the material is conveyed along with the transporting air via the material conveying pipe (100) to the delivery end of the pneumatic material conveying system, where the material is separated from the transporting air. In the method the channel section (20(II), 20(III), 20(IV) . . . (22(II), (22(III), 22(IV)) of at least one second input point is connected to the channel section (20(I), 21(I), 22(I)) of one first input point between the input point (1) and an impeding means (30, 30'), in that in the method at least a part of the material (w1, w2, w3, w4) fed in is acted upon by the combined effect of suction and replacement air in the channel section (20(I), 21(I), 22(I) . . . (20(IV), 21(IV), 22(IV)) by bringing about compression in size in at least a part of the material (w1, w2, w3, w4) being conveyed, by means of an impediment (30) arranged between the conveying pipe (100) and the material (w1, w2, w3, w4) to be handled, or against the impediment, before transportation of the material to the delivery end of the pneumatic transport system for wastes.
Owner:MARICAP OY

Method of and apparatus for electrostatic fluid acceleration control of a fluid flow

A device for handling a fluid includes a corona discharge device and an electric power supply. The corona discharge device includes at least one corona discharge electrode and at least one collector electrode positioned proximate each other so as to provide a total inter-electrode capacitance within a predetermined range. The electric power supply is connected to supply an electric power signal to said corona discharge and collector electrodes so as to cause a corona current to flow between the corona discharge and collector electrodes. An amplitude of an alternating component of the voltage of the electric power signal generated is no greater than one-tenth that of an amplitude of a constant component of the voltage of the electric power signal. The alternating component of the voltage is of such amplitude and frequency that a ratio of an amplitude of the alternating component of the highest harmonic of the voltage divided by an amplitude of the constant component of said voltage being considerably less than that of a ratio of an amplitude of the highest harmonic of the alternating component of the corona current divided by an amplitude of the constant component of the corona current, i.e., (Vac / Vdc)≦(Iac / Idc).
Owner:KRONOS ADVANCED TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products