Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1038 results about "Chip stacking" patented technology

High density integrated circuit packaging with chip stacking and via interconnections

Chip stacks with decreased conductor length and improved noise immunity are formed by laser drilling of individual chips, such as memory chips, preferably near but within the periphery thereof, and forming conductors therethrough, preferably by metallization or filling with conductive paste which may be stabilized by transient liquid phase (TLP) processes and preferably with or during metallization of conductive pads, possibly including connector patterns on both sides of at least some of the chips in the stack. At least some of the chips in the stack then have electrical and mechanical connections made therebetween, preferably with electroplated solder preforms consistent with TLP processes. The connections may be contained by a layer of resilient material surrounding the connections and which may be formed in-situ. High density circuit packages thus obtained may be mounted on a carrier by surface mount techniques or separable connectors such as a plug and socket arrangement. The carrier may be of the same material as the chip stacks to match coefficients of thermal expansion. High-density circuit packages may also be in the form of removable memory modules in generally planar or prism shaped form similar to a pen or as a thermal conduction module.
Owner:INT BUSINESS MASCH CORP

High density integrated circuit packaging with chip stacking and via interconnections

Chip stacks with decreased conductor length and improved noise immunity are formed by laser drilling of individual chips, such as memory chips, preferably near but within the periphery thereof, and forming conductors therethrough, preferably by metallization or filling with conductive paste which may be stabilized by transient liquid phase (TLP) processes and preferably with or during metallization of conductive pads, possibly including connector patterns on both sides of at least some of the chips in the stack. At least some of the chips in the stack then have electrical and mechanical connections made therebetween, preferably with electroplated solder preforms consistent with TLP processes. The connections may be contained by a layer of resilient material surrounding the connections and which may be formed in-situ. High density circuit packages thus obtained may be mounted on a carrier by surface mount techniques or separable connectors such as a plug and socket arrangement. The carrier may be of the same material as the chip stacks to match coefficients of thermal expansion. High-density circuit packages may also be in the form of removable memory modules in generally planar or prism shaped form similar to a pen or as a thermal conduction module.
Owner:IBM CORP

Semiconductor chip having TSV (through silicon via) and stacked assembly including the chips

A semiconductor chip having through silicon vias (TSV) and a stacked assembly including the chip are revealed. The chip has a plurality of first and second bonding pads disposed on two opposing surfaces of a semiconductor substrate respectively. Through hole vertically penetrate through the semiconductor substrate and the first and second bonding pads. By forming first extruded ring, the first bonding pad has a first contact surface located between the first extruded ring and the through hole. By forming second extruded ring, the second bonding pad has a second contact surface located outside and adjacent to the second extruded rings to encircle the second extruded ring. The second extruded ring has a proper dimension to fit in the first extruded ring. Accordingly, a plurality of semiconductor chip can be stacked each other with accurate alignment without shifting to effectively reduce the stacked assembly height, moreover, chip stacking processes are accomplished by vertically stacking a plurality of chips first then filling conductive material into the through holes without electrical short between the adjacent bonding pads due to overflow of conductive material to meet the fine-pitch requirements of TSV. The process flow for the stacked assembly is simplified with higher production yields.
Owner:POWERTECH TECHNOLOGY

Multi-chip stack structure having through silicon via and method for fabrication the same

The invention discloses a multi-chip stack structure having through silicon via and a method for fabricating the same. The method includes: providing a wafer having a plurality of first chips; forming a plurality of holes on a first surface of each of the first chips and forming metal posts and solder pads corresponding to the holes so as to form a through silicon via (TSV) structure; forming at least one groove on a second surface of each of the first chips to expose the metal posts of the TSV structure so as to allow at least one second chip to be stacked on the first chip, received in the groove and electrically connected to the metal posts exposed from the groove; filling the groove with an insulating material for encapsulating the second chip; mounting conductive elements on the solder pads of the first surface of each of the first chips and singulating the wafer; and mounting and electrically connecting the stacked first and second chips to a chip carrier via the conductive elements. The wafer, which is not totally thinned but includes a plurality of first chips, severs a carrying purpose during the fabrication process and thereby solves problems, namely a complicated process, high cost, and adhesive layer contamination, facing the prior art that entails repeated use of a carrier board and an adhesive layer for vertically stacking a plurality of chips and mounting the stacked chips on a chip carrier.
Owner:SILICONWARE PRECISION IND CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products