Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1382results about How to "Accelerated dissipation" patented technology

Patient oxygen delivery mask

A mask for delivery of oxygen to a patient, the mask comprising a body having a peripheral portion, when in use to sit comfortably on a patient's face, a central portion, and bridge portions extending between the central portion and the peripheral portion and integral therewith, the central portion having an inner surface and an outer surface, the inner surface to be oriented towards the patient's face when the mask is in position and contoured so as to sit at a location spaced over the patient's nose and mouth, the inner surface of the central portion provided with a wall circumscribing a base, the wall and base being of generally concave configuration and circumscribing a centrally positioned oxygen delivery aperture extending through the central portion between the inner surface and the outer surface, the wall and base configured so as to act as an oxygen diffuser to direct the flow of oxygen generally towards the patient's nose and mouth when the mask is in use; and tabs on opposite sides of the peripheral portion for securing a flexible strap to extend behind the patient's head to hold the mask in position when in use; and means associated with the aperture and of the central portion releasably to receive and secure in position an oxygen delivery tube. In one embodiment, exhaled carbon dioxide may also be collected for measurement. The mask according to the present invention provides comfort, reliability and efficiency in oxygen delivery to patients.
Owner:SOUTHMEDIC

Parallel arranged linear amplifier and dc-dc converter

A power supply system comprises a parallel arrangement of a linear amplifier (LA) and a DC-DC converter (CO). The linear amplifier (LA) has an amplifier output to supply a first current (II) to the load (LO). The DC-DC converter (CO) comprises: a converter output for supplying a second current (12) to the load (LO), a first inductor (L1), and a switch (SC) coupled to the first inductor (L1) for generating a current in the first inductor (L1), and a low-pass filter (FI) arranged between the first inductor (L1) and the load (LO). The low pass filter (FI) comprises a first capacitor (C1; CA) which has a first terminal coupled to the switch (SC) an a second terminal coupled to a reference voltage level (GND), and a second inductor (L2; LC) which has a first terminal coupled to the first inductor (L1) and a second terminal coupled to the load (LO). The low-pass filter further comprises, either: (i) a series arrangement of a second capacitor (C2) and a damping resistor (R2), which series arrangement is arranged in parallel with the first capacitor (C1), or (ii) a parallel arrangement of a third capacitor (CB) and a damping resistor (RB) arranged in series with the first capacitor (CA), or (iii) a series arrangement of a third inductor (L3) and a damping resistor (R3), which series arrangement is arranged in parallel with the second inductor (L2), or (iv) a parallel arrangement of a fourth inductor (LD) and a damping resistor (RD), which parallel arrangement is arranged in series with the second inductor (LC).
Owner:NXP BV

Structure and method of attaching a heat transfer part having a compressible interface

The present invention discloses a thermal transfer interface having an integrally formed means for fastening and maintaining intimate thermal contact between a heat generating device and a heat-dissipating device. The interface of the present invention includes two components, a compressible thermal transfer component having a first thickness and an adhesive fastening component having a second thickness that is less than the first. The first component, the thermal transfer element, includes a base polymer matrix compound that is loaded with a thermally conducting filler that imparts thermally conductive properties to the net shape moldable material. The polymer base matrix is preferably a highly compressible material such as an elastomer. The second component of the present invention is a pressure sensitive adhesive component. The adhesive is applied adjacent to the thermal transfer element or in an alternating pattern throughout a base field of thermal transfer material. The adhesive component has a thickness that is less than the overall thickness of the thermal transfer material. When, the heat dissipating device with the present invention applied is pressed into contact with a heat generating surface the elastomer is compressed and maintained in the compressed state by the pressure sensitive adhesive material.
Owner:TICONA POLYMERS INC

LED package

The present invention relates a light emitting diode (LED) package. The present invention provides an LED package, wherein one cavity for defining a circumference of an LED chip and other cavities necessary for exposing lead frames are separately formed in a supporting member for supporting lead frames, and the cavity defining the circumference of the LED chip is separately filled with a resin, whereby it is possible to prevent an irregular interface between the resin portions, and when a phosphor is contained in the resin portion formed to be confined in the circumference of the LED chip, it is possible to reduce color deviation for each light directional angle and to prevent unnecessary waste of the phosphor.
To this end, an LED package according to the present invention comprises first and second lead frames disposed to be spaced apart from each other; an LED chip mounted on the first lead frame and connected to the second lead frame by a bonding wire; a supporting member formed to support the first and second lead frames, the supporting member defining first and second cavities divided from each other, the first cavity being formed on the first lead frame having the LED chip positioned thereon, the second cavity being formed on the second lead frame having one end of the bonding wire positioned thereon; and a molding member including a first resin portion filled in the first cavity to cover the LED chip and a second resin portion covering the first resin portion while a portion of the second resin is filled in the second cavity.
Owner:SEOUL SEMICONDUCTOR
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products