Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

53 results about "TRPV4" patented technology

Transient receptor potential cation channel subfamily V member 4 is an ion channel protein that in humans is encoded by the TRPV4 gene. The TRPV4 gene encodes TRPV4, initially named "vanilloid-receptor related osmotically activated channel" (VR-OAC) and "OSM9-like transient receptor potential channel, member 4 (OTRPC4)", a member of the vanilloid subfamily in the transient receptor potential (TRP) superfamily of ion channels. The encoded protein is a Ca²⁺-permeable, nonselective cation channel that has been found involved in multiple physiologic functions, dysfunctions and also disease. It functions in the regulation of systemic osmotic pressure by the brain, in vascular function, in liver, intestinal, renal and bladder function, in skin barrier function and response of the skin to ultraviolet-B radiation, in growth and structural integrity of the skeleton, in function of joints, in airway- and lung function, in retinal and inner ear function, and in pain. The channel is activated by osmotic, mechanical and chemical cues. It also responds to thermal changes (warmth). Channel activation can be sensitized by inflammation and injury.

Protein involved in detection of cancer metastasis and a treatment thereof

Using phosphoproteomics, we profiled the phosphorylation levels of hundreds of proteins concurrently across an isogenic model of breast cancer metastasis. Among them is TRPV4, a calcium channel that we found to be overexpressed in invasive breast tumors compared to ductal carcinoma in situ, a pre-neoplastic lesion and normal tissues. TRPV4 was also found to be elevated mostly in invasive breast cancer cell lines and less so in non-invasive breast cancer cell lines. These data led us to hypothesize that TRPV4 confer early traits of metastatic cancer cells. Functional studies revealed that silencing of TRPV4 expression diminished breast cancer cell migration and invasion significantly but not proliferation. Silencing expression of TRPV4 in metastatic breast cancer cells also reduced the number and size of metastatic colonies in mice. This supports the notion that TRPV4 is an attractive drug target to curb metastasis. Further experimentations suggested that the functional effect of TRPV4 on breast cancer cellular processes was associated with regulation of intracellular Ca2+, cell plasticity and expression of cell-cell adhesion proteins such as beta-catenin and E-cadherin. The latter two events have obvious implications in cancer invasion and intravasation/extravasation. We have also made novel observations that activation of TRPV4 by PDD led to activation of AKT and FAK pathways, both shown to be important to cell migration. In particular, downregulation of E-cadherin and b-catenin following TRPV4 activation has been shown to be mediated by the AKT pathway. Collectively, our data suggest that activation of Ca2+ dependent cascades and pathways associated with cell migration mediate TRPV4 function in breast cancer metastasis.
Owner:NAT UNIV OF SINGAPORE

Trpv4 antagonist

The present invention relates to a novel compound useful as a TRPV4 antagonist, specifically the compound 1-(((5S,7R)-3-(5-cyclopropylpyrazin-2-yl)-7-hydroxy-2-oxo-1-oxa-3-azaspiro[4.5]decan-7-yl)methyl)-1H-benzo[d]imidazole-6-carbonitrile, pharmaceutically acceptable salts thereof and pharmaceutical compositions containing the compound. The compound of the invention can be useful in the treatmentof a disease state selected from: atherosclerosis, disorders related to vasogenic edema, postsurgical abdominal edema, ocular edema, cerebral edema, local and systemic edema, fluid retention, sepsis,hypertension, inflammation, bone related dysfunctions and congestive heart failure, pulmonary disorders, chronic obstructive pulmonary disorder, ventilator induced lung injury, high altitude inducedpulmonary edema, acute respiratory distress syndrome, acute lung injury, pulmonary fibrosis, sinusitis/rhinitis, asthma, cough; including acute cough, sub-acute cough and chronic cough, pulmonary hypertension, overactive bladder, cystitis, pain, motor neuron disorders, genetic gain of function disorders, cardiovascular disease, renal dysfunction, stroke, glaucoma, retinopathy, endometriosis, pre-term labor, dermatitis, pruritus, pruritus in liver disease, diabetes, metabolic disorder, obesity, migraine, pancreatitis, tumor suppression, immunosuppression, osteoarthritis, crohn's disease, colitis, diarrhea, intestinal irregularity (hyperreactivity/hyporeactivity), fecal incontinence, irritable bowel syndrome (IBS), constipation, intestinal pain and cramping, celiac disease, lactose intolerance, and flatulence.
Owner:GLAXOSMITHKLINE INTELLECTUAL PROPERTY (NO 2) LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products