Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2258results about "Communication cables" patented technology

Electooptical Communications and Power Cable

An electrooptical communications and power cable has at least one light waveguide, which is arranged in a central multifibre bundle consisting of a smooth flexible metal tube and provided with a primary jacket. Two layers of stranded metal wires are extended coaxially to the multifibre bundle. The metal wires are also used for relieving a traction and / or transversal load. The internal metal wire layer consists of metal wires exhibiting a good electric conductivity. The external metal wire layer has metal wires which are arranged alternately individually and / or group groupwisely and exhibit a good electrical conductivity and metal wires exhibiting a high traction strength. The two wire layers are held at a distance (a) from each other by an insulating layer. The communications and power cable is used first of all for an electrooptical power connection between two voltage converters in an intelligent system.
Owner:BRUGG KABEL

Optical receiver stub fitting

A cable assembly for attachment to an entry port of an optical enclosure. The assembly includes a plug for an end of an optical cable in a sealed housing having a single rigid tube and a single sealed nut. Connectorized optical fibers or an optical ribbon extend from the plug into the equipment enclosure.
Owner:SIECOR A DELAWARE

Electric cable with strain sensor and monitoring system and method for detecting strain in at least one electric cable

An electric cable includes a strain sensor longitudinally extending along the cable and including a strain optical fibre arranged within a bending neutral region surrounding and including a bending neutral longitudinal axis of the electric cable, and at least two longitudinal structural elements, at least one of the at least two longitudinal structural elements being a core including an electrical conductor, wherein the strain sensor is embedded in a strain-transferring filler mechanically coupling at least one of the at least two longitudinal structural elements with the strain sensor. With the disclosed cable construction, the strain experienced by the at least one of the at least two longitudinal structural elements is transferred to the strain sensor at least in a strained condition. In the preferred embodiments, the electric cable is a heavy-duty cable.
Owner:PRYSMIAN SPA

Downhole cables with both fiber and copper elements

Provided is a method of manufacturing a downhole cable, the method including, forming a helical shape in an outer circumferential surface of a metal tube, the metal tube having a fiber element housed therein, and stranding a copper element in a helical space formed by the metallic tube. Also provided is a downhole cable including, a metallic tube having a helical space in an outer circumferential surface thereof, wherein the metallic tube has a fiber element housed therein, and a copper element disposed in a helical space formed by the steel tube. Double-tube and multi-tube configurations of the downhole cable are also provided.
Owner:AFL COMM LLC

Thermostat with self-configuring connections to facilitate do-it-yourself installation

A thermostat is configured for automated compatibility with HVAC systems that are either single-HVAC-transformer systems or dual-HVAC-transformer systems. The compatibility is automated in that a manual jumper installation is not required for adaptation to either single-HVAC-transformer systems or dual-HVAC-transformer systems. The thermostat has a plurality of HVAC wire connectors including a first call relay wire connector, a first power return wire connector, a second call relay wire connector, and a second power return wire connector. The thermostat is configured such that if the first and second external wires have been inserted into the first and second power return wire connectors, respectively, then the first and second power return wire connectors are electrically isolated from each other. Otherwise, the first and second power return wire connectors are electrically shorted together.
Owner:GOOGLE LLC

Floating segmented shield cable assembly

Signals in an RF field, such as that of an MRI system, are communicated through an inner conductor having an outer shield with a dielectric material therebetween and an outer cable jacket. Current in the shield caused by the RF field from the transmit body coil is reduced by providing a second dielectric material around the shield conductor and a plurality of segmented shield conductor portions formed of non-magnetic braid or wrapped non-magnetic foil tape outside the second dielectric material and inside the jacket at spaced positions along the cable, with the portions being electrically separated from each other and from the shield so that the segmented shield conductor portions act to shield the outer shield conductor to reduce the generation of current thereon while the electrical separation of the segmented shield conductor portions each from the others prevents the generation of a current along the portions.
Owner:DEERFIELD IMAGING INC

Earphone cable structure

An earphone cable structure includes a first connection sleeve, a primary cable, a first branch cable, a second branch cable and a thin-type bridging section. The first connection sleeve includes a first end and a second end. The primary cable is connected to the first end, and includes first core lines and second core lines. The first branch cable is connected to the second end, and includes third core lines connected to the first core lines. The second branch cable is connected to the second end, and includes fourth core lines connected to the second core lines. The axial cross-sectional width of the primary cable is equal to the axial cross-sectional width of the first branch cable plus that of the second branch cable. The thin-type bridging section is connected between the first branch cable and the second branch cable.
Owner:JETVOX ACOUSTIC

Cable assembly for mobile media devices

Disclosed herein is a mobile media device cable assembly for connecting a mobile media device with an accessory device, e.g., a docking station, audio system (stereo) or video system (television). The cable assembly provides multi-pin connections while the device is in a case or cover. The assembly comprises a flexible cable having a plurality of wires for transmitting audio, video, data, and power signals. The plurality of wires are in communication with respective pins of multi-pin female and male connectors on either terminus of the flexible cable. A first ground return comprising a flexible wire shield encapsulates the plurality of wires, and a second ground return comprising a flexible wire shield is surrounded by the first ground return. The second ground return encapsulates and electrically isolates the wires a subset of the plurality of wires, i.e., the wires that transmit audio and video signals, to prevent electric signal crossover. In one embodiment, at least two pins of each of the female and male connectors are electrically associated with the second ground return. In another embodiment, the multi-pin male connector comprises a first printed circuit board, where one end of the board is soldered to the plurality of wires and has a maximum dimension of 16 mm, and a housing associated with the multi-pin male connector has a maximum dimension of 27 mm.
Owner:CABLEJIVE

Self-supporting cables and an apparatus and methods for making the same

Cables and an apparatus and methods for making cables having at least one messenger section, transmission sections, and at least two series of connecting webs. At least one series of webs can be intermittently formed. The messenger section can include a messenger wire for supporting the cable, and the transmission sections can include electrical / electronic and / or optical transmission components. A method of making cables may include the steps of pulling cable components through a melt cavity having a molten jacketing material therein; defining at least three cable sections by coating the cable components with the molten jacketing material; monolithically forming at least two series of connecting webs made of the molten jacketing material between each cable section during a web-forming mode; and defining intermittent webs by forming longitudinal gaps between the webs of at least one of the series of webs during a gap-forming mode by switching between the web-forming and gap-forming modes with respect to the at least one series of webs. The apparatus includes a melt cavity associated with a die orifice having web-forming sections, and gap forming parts associated with the web-forming sections, the gap forming parts being operative to block the flow of the cable jacketing material for forming gaps defining the webs.
Owner:CORNING OPTICAL COMM LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products