Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

72 results about "Coronary Vein" patented technology

A blood vessel in the heart which returns coronary blood to the right atrium.

Transluminal mitral annuloplasty

InactiveUS20050096740A1Heart valvesVeinMitral annulus
A mitral annuloplasty and left ventricle restriction device is designed to be transvenously advanced and deployed within the coronary sinus and in some embodiments other coronary veins The device places tension on adjacent structures, reducing the diameter and / or limiting expansion of the mitral annulus and / or limiting diastolic expansion of the left ventricle. These effects may be beneficial for patients with dilated cardiomyopathy.
Owner:EDWARDS LIFESCIENCES AG

System for cardiac procedures

A system for accessing a patient's cardiac anatomy which includes an endovascular aortic partitioning device that separates the coronary arteries and the heart from the rest of the patient's arterial system. The endovascular device for partitioning a patient's ascending aorta comprises a flexible shaft having a distal end, a proximal end, and a first inner lumen therebetween with an opening at the distal end. The shaft may have a preshaped distal portion with a curvature generally corresponding to the curvature of the patient's aortic arch. An expandable means, e.g. a balloon, is disposed near the distal end of the shaft proximal to the opening in the first inner lumen for occluding the ascending aorta so as to block substantially all blood flow therethrough for a plurality of cardiac cycles, while the patient is supported by cardiopulmonary bypass. The endovascular aortic partitioning device may be coupled to an arterial bypass cannula for delivering oxygenated blood to the patient's arterial system. The heart muscle or myocardium is paralyzed by the retrograde delivery of a cardioplegic fluid to the myocardium through patient's coronary sinus and coronary veins, or by antegrade delivery of cardioplegic fluid through a lumen in the endovascular aortic partitioning device to infuse cardioplegic fluid into the coronary arteries. The pulmonary trunk may be vented by withdrawing liquid from the trunk through an inner lumen of an elongated catheter. The cardiac accessing system is particularly suitable for removing the aortic valve and replacing the removed valve with a prosthetic valve.
Owner:EDWARDS LIFESCIENCES LLC

Method and apparatus for transmyocardial direct coronary revascularization

InactiveUS6929009B2Facilitate valvingShortening and thickeningEar treatmentCannulasVeinHeart chamber
Methods and apparatus for direct coronary revascularization wherein a transmyocardial passageway is formed between a chamber of the heart and a coronary blood vessel to permit blood to flow therebetween. In some embodiments, the transmyocardial passageway is formed between a chamber of the heart and a coronary vein. The invention includes unstented transmyocardial passageways, as well as transmyocardial passageways wherein protrusive stent devices extend from the transmyocardial passageway into an adjacent coronary vessel or chamber of the heart. The apparatus of the present invention include protrusive stent devices for stenting of transmyocardial passageways, intraluminal valving devices for valving of transmyocardial passageways, intracardiac valving devices for valving of transmyocardial passageways, endogenous tissue valves for valving of transmyocardial passageways, and ancillary apparatus for use in conjunction therewith.
Owner:MEDTRONIC VASCULAR INC

Apparatus and methods for delivering transvenous leads

Apparatus and methods are provided for delivering a lead over a rail into a target body lumen, cavity, or other vessel, e.g., a coronary vein or a right ventricle within a patient's heart. For example, a distal end of an elongate guidewire or other rail may be introduced into the coronary venous system via the coronary sinus, advanced through the coronary venous system to a location beyond a target vessel, and secured at the location beyond the target vessel. A catheter or other elongate tubular member is advanced over the rail and manipulated to position an outlet of the tubular member adjacent to or otherwise aligned relative to the target vessel. A distal end of a lead is delivered through the tubular member and out the outlet into the target vessel. The catheter and rail are then removed, leaving the lead within the target vessel.
Owner:MEDTRONIC INC

Methods and apparatus for transmyocardial direct coronary revascularization

InactiveUS7159592B1Easy to movePromote formationEar treatmentCannulasCoronary revascularizationCoronary revascularisation
Methods and apparatus for direct coronary revascularization wherein a transmyocardial passageway is formed between a chamber of the heart and a coronary blood vessel to permit blood to flow therebetween. In some embodiments, the transmyocardial passageway is formed between a chamber of the heart and a coronary vein. The invention includes unstented transmyocardial passageways, as well as transmyocardial passageways wherein protrusive stent devices extend from the transmyocardial passageway into an adjacent coronary vessel or chamber of the heart. The apparatus of the present invention include protrusive stent devices for stenting of transmyocardial passageways, intraluminal valving devices for valving of transmyocardial passageways, intracardiac valving devices for valving of transmyocardial passageways, endogenous tissue valves for valving of transmyocardial passageways, and ancillary apparatus for use in conjunction therewith.
Owner:MEDTRONIC VASCULAR INC

Method for acquiring 3-dimensional images of coronary vessels, particularly of coronary veins

A method and an apparatus for acquiring 3-dimensional images of coronary vessels (11), particularly of coronary veins, is proposed. 2-dimensional X-ray images (13) are acquired within a same phase of a cardiac motion. Then, a 3-dimensional centerline model (15) is generated based on these 2-dimensional images. From 2-dimensional projections of the centerline model into respective projection planes, the local diameters (w) of the vessels in the projection plane can be derived. Having the diameters, a 3-dimensional hull model of the vessel system can be generated and, optionally, 4-dimensional information about the vessel movement can be derived.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

System and method for positioning implantable medical devices within coronary veins

An improved system and method for placing implantable medical devices (IMDs) such as leads within the coronary sinus and branch veins is disclosed. In one embodiment, a slittable delivery sheath and a method of using the sheath are provided. The sheath includes a slittable hub, and a substantially straight body defining an inner lumen. The body comprises a shaft section and a distal section that is distal to, and softer than, the shaft section. A slittable braid extends adjacent to at least a portion of one of the shaft section and the distal section. In one embodiment of the invention, the sheath further includes a transition section that is distal to the shaft section, and proximal to the distal section. The transition section is softer than the shaft section, but stiffer than the distal section.
Owner:MEDTRONIC INC

Transluminal mitral annuloplasty

A mitral annuloplasty and left ventricle restriction device is designed to be transvenously advanced and deployed within the coronary sinus and in some embodiments other coronary veins The device places tension on adjacent structures, reducing the diameter and / or limiting expansion of the mitral annulus and / or limiting diastolic expansion of the left ventricle. These effects may be beneficial for patients with dilated cardiomyopathy.
Owner:EDWARDS LIFESCIENCES AG

Thrombolysis and chronic anticoagulation therapy

Thrombolytic and / or anticoagulation therapy of the present invention includes implantation of the discharge portion(s) of a catheter and, optionally, one or more electrodes on a lead, adjacent tissue(s) to be stimulated. Stimulation pulses, i.e., drug infusion pulses and optional electrical pulses, are supplied by a stimulator implanted remotely, and through the catheter or lead, which is tunneled subcutaneously between the stimulator and stimulation site. Stimulation sites include the coronary arteries, coronary veins, cerebral arteries, other blood vessels, chambers of the heart, mesenteric vessels, deep vessels of the leg, and other locations. Disclosed treatments include drugs used for chronic treatment and / or prevention of thromboembolic disease, for acute treatment of thromboembolic disease, for acute treatment of thrombosis, and combinations of these. The invention reduces or eliminates the incidence of thromboembolic disease and related morbidities, improve symptoms resulting from thromboembolic disease, and improve patient quality of life.
Owner:BOSTON SCI NEUROMODULATION CORP

Method and system for detecting capture using a coronary vein electrode

A method and device provide for determining capture in multiple chambers of a patient's heart using an electrode inserted into a coronary vein of the patient's heart. The coronary vein electrode is positioned adjacent to multiple heart chambers and is responsive to cardiac signals originating in the multiple chambers. The coronary vein electrode may be coupled to a single sense amplifier to detect the cardiac signals. Pace pulses may be applied to multiple heart chambers simultaneously or according to a phased timing sequence. Cardiac signals responsive to the pace pulses sensed using the coronary vein electrode may be used to verify capture in the multiple chambers of the heart.
Owner:CARDIAC PACEMAKERS INC

Apparatus and methods for delivering transvenous leads

Apparatus and methods are provided for delivering a lead over a rail into a target body lumen, cavity, or other vessel, e.g., a coronary vein or a right ventricle within a patient's heart. For example, a distal end of an elongate guidewire or other rail may be introduced into the coronary venous system via the coronary sinus, advanced through the coronary venous system to a location beyond a target vessel, and secured at the location beyond the target vessel. A catheter or other elongate tubular member is advanced over the rail and manipulated to position an outlet of the tubular member adjacent to or otherwise aligned relative to the target vessel. A distal end of a lead is delivered through the tubular member and out the outlet into the target vessel. The catheter and rail are then removed, leaving the lead within the target vessel.
Owner:MEDTRONIC INC

Apparatus and method for auto-retroperfusion of a coronary vein

An apparatus for automatically retroperfusing a coronary vein includes an intraluminal cannula having a main body portion extending between a proximal end portion and a distal end portion. The proximal end portion is for connecting to an artery outside of the pericardium to automatically supply oxygenated blood from the artery for retroperfusion. The main body portion and the distal end portion are insertable through a vein that is fluidly connected with the coronary vein and into the coronary vein. An expandable stent is attached to the distal end portion for expanding radially into engagement with the interior wall of the coronary vein to secure the distal end portion at a desired location within the coronary vein. Occluding structure for at least partially occluding the coronary vein is provided at the distal end to decrease the back-flow of blood into the right atrium during retroperfusion.
Owner:THE CLEVELAND CLINIC FOUND

Visualization of coronary vein procedure

Visualization of a medical procedure to be performed in a coronary vessel (such as a coronary sinus) of a patient is achieved by the steps of: identifying a coronary vessel for a procedure and placing a catheter within the coronary vessel. The coronary vessel is occluded at a site proximal to a distal end of the catheter. A contrast medium is injected into the coronary vessel through the catheter distal end for visualization of the procedure within the coronary vessel. Following the procedure, the contrast medium is removed through the catheter distal end and occlusion of the coronary vessel is discontinued.
Owner:OSPREY MEDICAL

Systems and Methods for Delivering Drugs to Selected Locations Within the Body

A transvascular system (10) for delivering a drug to a tissue region from a blood vessel, such as a coronary vein, includes a catheter (12) having a distal portion (26) with puncturing (14), orientation (16), drug delivery (62), and imaging elements (18). The puncturing element (14) is deployable for penetrating the vessel wall to access the tissue region. The orientation element (16), e.g. a “cage” including a plurality of struts (38) (40) and / or a radiopaque marker, has a predetermined relationship with the puncturing element (14), the imaging element (18) detecting the location of the orientation element (16) with respect to the tissue region to orient the puncturing element. The catheter (12) is percutaneously introducing into the vessel, the puncturing element (14) is oriented towards the tissue region, the puncturing element (14) is deployed to access the tissue region, and the drug is delivered to the tissue region. An ablation device (230) may also be deployed to create a cavity or fluid reservoir in the tissue region for receiving the drug therein, or an indwelling catheter (214) may be advanced into and left in the tissue region.
Owner:MEDTRONIC VASCULAR INC

Inflatable electrode for temporary pacing

A temporary balloon-type electrode for insertion and temporary fixation in a blood vessel of a heart, for determining a suitable place therein for a subsequently inserted and fixed permanent electrode, has a catheter and an inflatable and deflatable balloon member disposed at a distal end portion of the catheter. The balloon member has at least one radially expandable hollow body. At least one electrode surface contact member is disposed at a peripheral portion of the hollow body, and flow passages are provided for allowing a blood flow to pass the balloon member when inflated. The temporary balloon-type electrode is particularly suited for use in coronary sinus and peripheral coronary veins of the heart.
Owner:ST JUDE MEDICAL

System and method for positioning implantable medical devices within coronary veins

An improved system and method for placing implantable medical devices (IMDs) such as leads within the coronary sinus and branch veins is disclosed. In one embodiment, a slittable delivery sheath and a method of using the sheath are provided. The sheath includes a slittable hub, and a substantially straight body defining an inner lumen. The body comprises a shaft section and a distal section that is distal to, and softer than, the shaft section. A slittable braid extends adjacent to at least a portion of one of the shaft section and the distal section. In one embodiment of the invention, the sheath further includes a transition section that is distal to the shaft section, and proximal to the distal section. The transition section is softer than the shaft section, but stiffer than the distal section.
Owner:MEDTRONIC INC

Catheter

The present invention provides a catheter for extraction that can efficiently extract blood flowing in coronary sinus from coronary artery through coronary vein and has the same operability as catheters used in conventional PCI. The present invention also provides a catheter for extracorporeal circulation that can lessen an introduction number of devices for blood access as little as possible and reduce further the burden to a patient, in addition to the same operability as the catheters used in the conventional PCI. The catheter for extraction is equipped with blood extracting lumen in an inside and equipped with a hub at a proximal end portion, and when a minimum sectional area to a circumferential direction of the blood extracting lumen is referred to as S1 and immersion side length is referred to as L1, an equivalent diameter D1 satisfies the formula defined by D1=(4×S1) / L1 and the equivalent diameter D1 is at 1.80 mm. The catheter for extracorporeal circulation also has blood extracting lumen extending from the distal end to the proximal end and blood return lumen extending from the proximal end of the catheter to a fixed length distal end.
Owner:KANEKA CORP

Methods and apparatus for transmyocardial direct coronary revascularization

InactiveUS20060184089A1Easy to movePromote formationCannulasDiagnosticsCoronary revascularizationCoronary revascularisation
Methods and apparatus for direct coronary revascularization wherein a transmyocardial passageway is formed between a chamber of the heart and a coronary blood vessel to permit blood to flow therebetween. In some embodiments, the transmyocardial passageway is formed between a chamber of the heart and a coronary vein. The invention includes unstented transmyocardial passageways, as well as transmyocardial passageways wherein protrusive stent devices extend from the transmyocardial passageway into an adjacent coronary vessel or chamber of the heart. The apparatus of the present invention include protrusive stent devices for stenting of transmyocardial passageways, intraluminal valving devices for valving of transmyocardial passageways, intracardiac valving devices for valving of transmyocardial passageways, endogenous tissue valves for valving of transmyocardial passageways, and ancillary apparatus for use in conjunction therewith.
Owner:GOWAN L L C

Apparatus for auto-retroperfusion of a coronary vein

InactiveUS20060195060A1StentsSurgeryVeinInsertion stent
An apparatus and method for automatically retroperfusing a coronary vein. The apparatus includes an intraluminal graft having a tubular body extending between a proximal end and a distal end. The proximal end is for fluidly connecting to an artery to automatically supply retrograde blood for retroperfusion. The tubular body and the distal end are extendable into a vein that is fluidly connected with the coronary vein to be retroperfused. The distal end includes an expandable stent for securing the distal end in the coronary vein.
Owner:THE CLEVELAND CLINIC FOUND

Leads for pacing and/or sensing the heart from within the coronary veins

InactiveUS7139614B2Suppress atrial arrhythmiaReliable and optimal performanceTransvascular endocardial electrodesExternal electrodesVeinCardiac activity
A lead for monitoring or stimulating cardiac activity is provided. The lead is adapted for implantation on or about the heart within the coronary vasculature and for connection to a signal generator. The lead body has one or more electrodes associated therewith. The lead is constructed and arranged so that when it is implanted, the electrodes are housed in the coronary vasculature and urged into intimate contact a vessel wall. A method for implanting the lead into the coronary vasculature is also provided, the method comprising the steps of inserting a stylet into the lead, inserting the lead into the coronary sinus, advancing the lead from the coronary sinus toward the toward the left atrium and into a coronary vein, removing the stylet, and sensing and pacing the heart. Alternatively, the method comprises placing a guide catheter into the coronary sinus, threading a guide wire into the coronary veins, pushing the lead over the guide wire and into the coronary sinus or the coronary vein, and sensing and pacing the heart via the lead in its implanted site in the coronary sinus or the coronary vein.
Owner:CARDIAC PACEMAKERS INC

Solid tissue impedance estimating method, cardiac output calculating method, pulmonary artery wedge pressure calculating method, cardiac output monitoring device, cardiac output monitoring system, pulmonary artery wedge pressure monitoring device, and pulmonary artery wedge pressure monitoring system

A practical method for estimating cardiac output and pulmonary artery wedge pressure with good accuracy is provided. The present invention provides a method for estimating the impedance arising from solid tissue by determining the impedance at the intersection between the line of identity and the extrapolated regression line, where the regression line is obtained by linearly regressing the maximum value to the minimum value of the impedance signal of each of multiple data sets, where each data set contains the maximum value and the minimum value of the impedance signal during one cardiac cycle, where impedance signal is obtained between a can electrode implanted in the left thoracic wall and an electrode inserted into the coronary vein, over a specific period of time following the infusion of hypertonic saline into the pulmonary circulation.
Owner:NAT CEREBRAL & CARDIOVASCULAR CENT +1

Apparatus and method for auto-retroperfusion of a coronary vein

An apparatus for automatically retroperfusing a coronary vein includes an intraluminal cannula having a main body portion extending between a proximal end portion and a distal end portion. The proximal end portion is for connecting to an artery outside of the pericardium to automatically supply oxygenated blood from the artery for retroperfusion. The main body portion and the distal end portion are insertable through a vein that is fluidly connected with the coronary vein and into the coronary vein. An expandable stent is attached to the distal end portion for expanding radially into engagement with the interior wall of the coronary vein to secure the distal end portion at a desired location within the coronary vein. Occluding structure for at least partially occluding the coronary vein is provided at the distal end to decrease the back-flow of blood into the right atrium during retroperfusion. The cannula includes passages that allow a limited amount of blood to bypass the occluding structure.
Owner:THE CLEVELAND CLINIC FOUND

Method and apparatus for detecting left ventricular lead displacement based upon EGM change

Displacement or migration of a left ventricular lead located within the coronary sinus or coronary veins of the heart is detected by comparing an electrogram (EGM) waveform pattern from the lead with a stored baseline EGM waveform pattern. Based upon the extent of lead migration, if any, a lead displacement may produce an annunciating response. The patient may be alerted, an electrical stimulus applied through the lead may be adjusted to compensate for lead migration, or an alternative electrode on the lead may be used for EGM sensing and pacing.
Owner:MEDTRONIC INC

Stimulation/sensing electrodes for use with implantable cardiac leads in coronary vein locations

A lead assembly for a body implantable medical system adapted to transmit electrical signals between proximal and distal end portions of the lead assembly to thereby stimulate selected body tissue includes an electrical conductor, an insulative sheath composed of silicone or polyurethane covering the conductor, an electrical connector coupled to the proximal end of the conductor for releasable attachment to a stimulating pulse generator and a distal electrode coupled to the distal end of the conductor. The distal electrode has an outer surface generally coaxial with the lead assembly and facing transversely of the longitudinal axis of the lead assembly and generally parallel to the selected body tissue intended for stimulation. The outer surface of the distal electrode is composed of a biocompatible metallic alloy and includes a layer of a material that exhibits low polarization and thereby enhances the electrical efficacy of the electrode.
Owner:PACESETTER INC

Methods of retroperfusion and related devices

Methods, and related devices, for treating a heart by allowing retrograde blood flow in a coronary vein may include flowing blood through a passageway between a blood-containing anatomical structure and a coronary vein so as to cause retrograde blood flow in the coronary vein. The methods, and related devices, may further include measuring an internal pressure of the coronary vein to determine a measured internal pressure and at least partially obstructing the coronary vein at a location upstream of the passageway relative to a direction of the retrograde blood flow based on the measured internal pressure.
Owner:HORIZON TECH FUNDING CO LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products