Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

46 results about "Superconducting quantum computing" patented technology

Superconducting quantum computing is an implementation of a quantum computer in superconducting electronic circuits. Research in superconducting quantum computing is conducted by Google, IBM, BBN Technologies, Rigetti, and Intel. as of May 2016, up to nine fully controllable qubits are demonstrated in a 1D array, up to sixteen in a 2D architecture.

Superconducting quantum bit structure with adjustable adjacent bit coupling strength

ActiveCN109784493AAdjust the coupling strengthImprove fidelityQuantum computersInductorUltimate tensile strength
The invention discloses a superconducting quantum bit structure with adjustable adjacent bit coupling strength. The superconducting quantum bit line comprises a first superconducting quantum bit line,including a capacitor C1, an inductance (shown in the specification) and a Josephson junction (shown in the specification). The capacitor C1 is connected with the inductor C1 in series, and the capacitor C1 is connected with the inductor C1 in series. The capacitor C1 is connected with the inductor C1 in series. The inductor C1 is connected with the inductor C1 in series. The capacitor C1 and theinductor (1) are connected in series, and the capacitor C1 and the inductor (1) are connected in parallel after the capacitor C1 and the inductor (1) are connected in series. The capacitor C1 and theinductor (1) are connected in series. Two ends of each of the first end and the second end of each of the first end, the second end and the third end. The superconducting quantum bit line also comprises a second superconducting quantum bit line, including a capacitor C2, an inductance (shown in the specification) and a Josephson junction (shown in the specification). The capacitor C2 and the inductor C2 are connected in series, and the inductor C2, the capacitor C2 and the inductor C2 are connected in series. The capacitor C2, the inductor C2 and the inductor C2 are connected in series. Capacitor C2 and inductor (shown in the specification) which are connected in series are connected to the capacitor C2 and the inductor (shown in the specification) in parallel, and the capacitor C2 and the inductor (shown in the specification) are connected to the capacitor C2 and the inductor (shown in the specification) in series. The number of the terminals is two, and the number of the terminals is two. The superconducting quantum bit structure also comprises a coupling loop, including a Josephson junction Lk forming a loop, an inductance (shown in the description) and an inductance (shown inthe description) as well as inductance (shown in the description) wherein the formula (1) is shown in the specification, and the formula (2) is shown in the specification. One end of the Josephson junction Lk is connected between the capacitor C1 and the inductor (please see the formula in the specification), and the other end of the Josephson junction Lk is connected between the capacitor C1 andthe inductor (please see the formula in the specification). The other end of the capacitor C2 is connected between the capacitor C2 and the inductor (please see the formula in the specification). Theother end of the capacitor C2 is connected between the capacitor C2 and the inductor (please see the formula in the specification); Inductance (shown in the description) and inductance (shown in the description) as well as inductance (shown in the description) According to the structure, the fidelity of the double-quantum-bit CZ gate is further improved, so that the precision of quantum calculation is improved, the expansibility is high, and the application of superconducting quantum calculation is promoted.
Owner:UNIV OF SCI & TECH OF CHINA

Optimization method and device for calculating single-bit gate sequence by superconducting quantum, and medium

The invention discloses an optimization method and device for calculating single-bit gate sequence by superconducting quantum, and a medium, and is used for solving the problems that the time span ofan input microwave pulse sequence is too long, quantum bit degradation is caused, and the uncertainty of a superconducting quantum calculation result is caused. The method comprises the following steps: determining a rotation operation corresponding to a single-bit gate sequence according to a preset rule; according to each rotation operation corresponding to the single-bit gate sequence, correspondingly rotating the initial state of the quantum bit to obtain a final state of the quantum bit; determining an equivalent rotation axis and an equivalent rotation angle corresponding to the single-bit gate sequence according to the quantum bit initial state and the quantum bit final state; and determining an optimized pulse sequence corresponding to the single-bit gate sequence according to theequivalent rotation axis and the equivalent rotation angle. According to the method, the time span of microwave pulse input corresponding to the single-bit gate sequence can be shortened, so that thesame quantum bit final state can be obtained on the premise that the decoherence degree of quantum bits is minimum, and the calculation accuracy is improved.
Owner:SHANDONG INSPUR SCI RES INST CO LTD

Long-service-life storage device and long-service-life storage method for superconducting quantum bits

The invention discloses a long-life storage device and a long-service-life storage method for superconducting quantum bits. The three-dimensional ellipsoid radio frequency superconducting thin film cavity with high quality factor is adopted, and compared with a currently used rectangular cavity, the three-dimensional ellipsoid radio frequency superconducting thin film cavity has the advantages that the quality factor reaches up to 1010; the superconductive quantum bits are coupled with the superconductive cavity, and the decorrelation time of the superconductive quantum bits is prolonged to a hundred milliseconds to second order, so that obstacles are cleared for realizing control and measurement of the quantum bits and quantum storage; according to the method, the superconducting quantum bits with long service life can be obtained, and the device method have important significance for quantum calculation, quantum storage, quantum information, quantum communication and other aspects; the three-dimensional ellipsoid radio frequency superconducting thin film cavity is applied to superconducting quantum calculation for the first time, a mature superconducting cavity technology and emerging superconducting quantum calculation are combined, and the superconducting quantum calculation is further extrapolated forwards.
Owner:PEKING UNIV

Architecture of superconducting quantum computer and information processing method

The invention discloses a system architecture of a superconducting quantum computer and an information processing method. The system architecture comprises temperature-controllable low-temperature equipment, a superconducting quantum processor, a low-temperature electronic function unit, a room-temperature terminal and a low-temperature room-temperature communication link. The superconducting quantum processor is arranged in the low-temperature equipment and works in a first temperature interval of mK magnitude. The low-temperature electronic function unit is arranged in the low-temperature equipment and works in a second temperature interval, the minimum value of the second temperature interval is higher than the maximum value of the first temperature interval, or the maximum value of the second temperature interval is higher than the maximum value of the first temperature interval, and the second temperature interval is overlapped with the first temperature interval; and the low-temperature electronic function unit is used for providing a required signal for the work of the superconducting quantum processor. the room-temperature terminal is in a third temperature interval, and the maximum value of the second temperature interval is smaller than the minimum value of the third temperature interval; and the room-temperature terminal communicates with the low-temperature electronic function unit through the low-temperature and room-temperature communication link.
Owner:UNIV OF SCI & TECH OF CHINA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products