Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

203results about "Apparatus with spatial temperature gradients" patented technology

Filler fluids for droplet operations

The present invention relates to filler fluids for droplet operations. According to one embodiment of this aspect, a droplet microactuator is provided and includes: (a) a first substrate comprising electrodes configured for conducting droplet operations on a surface of the substrate; (b) a second substrate spaced from the surface of the substrate by a distance sufficient to define an interior volume between the first substrate and second substrate, wherein the distance is sufficient to contain a droplet disposed in the space on the first substrate; and (c) a droplet arranged in the interior volume and arranged with respect to the electrodes in a manner which permits droplet operations to be effected on the droplet using the electrodes.
Owner:DUKE UNIV +1

Devices and methods for monitoring genomic DNA of organisms

The invention provides an apparatus that can be used in methods of preparing, amplifying, detecting, and / or optionally selecting for further analysis the genomic material from an organism for the rapid detection and / or classification of an organism in a sample (e.g., screening for, identifying, quantifying, and / or optionally further analyzing, e.g., sequencing, the genomic material of the organism). The invention further provides methods of using the apparatus, e.g., in combination with novel SGP primers for improved use in waveform-profiling methods of DNA amplification. It is an object of the invention to provide an apparatus for fully automated analysis of genomic material, and multiple methods of using the apparatus that are beneficial to society, e.g., the apparatus may be used in methods of screening for, identifying, quantifying, and / or selecting genomic material for further analysis (e.g., sequencing) in relation to monitoring a source for the presence of contaminating organisms.
Owner:CANON US LIFE SCIENCES INC

Enzyme Assays for a Droplet Actuator

The invention relates to a microfluidic platform and methods of using the platform for conducting enzyme assays using a droplet actuator. The enzyme assays of the invention are useful for, among other things, identifying and / or characterizing disorders resulting from conditions in which enzymes are defective or are produced in inappropriate amounts. Enzyme assays of the invention may, for example, be used to detect altered activity of a particular enzyme in a sample, which may serve as an indicator of a particular disease. Altered activity may, for example, be caused by conditions which result in the increased or reduced production of a certain enzyme or its substrate and / or conditions which result in defective enzymes and / or substrates exhibiting increased or decreased effectiveness relative to corresponding normal enzymes and / or substrates.
Owner:ADVANCED LIQUID LOGIC

Modular systems and methods for using sample processing devices

InactiveUS6889468B2Rapid and easy removalRapid and easy and replacementBioreactor/fermenter combinationsBiological substance pretreatmentsBiomedical engineeringModular system
Sample processing systems and methods of using those systems for processing sample materials located in devices that are separate from the system are disclosed. The sample processing systems include a rotating base plate on which the sample processing devices are located during operation of the systems. The systems also include connection apparatus that allow for rapid and easy removal and / or replacement of base plates.
Owner:DIASORIN ITALIA SPA

Localized temperature control for spatial arrays of reaction media

Individual temperature control in multiple reactions performed simultaneously in a spatial array such as a multi-well plate is achieved by thermoelectric modules with individual control, with each module supplying heat to or drawing heat from a single region within the array, the region containing either a single reaction vessel or a group of reaction vessels.
Owner:BIO RAD LAB INC

Apparatus for performing biochemical processing using container having wells

A biochemical processing apparatus includes a thermal cycle section, a processing section for performing a processing not requiring heating or cooling, and a cooling section. These sections are arranged in that order and opposed to a container with a plurality of wells.
Owner:CANON KK

Device for carrying out chemical or biological reactions

The invention relates to a device for carrying out of chemical or biological reactions with a reaction vessel receiving element for receiving a microtiter plate with several reaction vessels, wherein the reaction vessel receiving element has several recesses arranged in a regular pattern to receive the respective reaction vessels, a heating device for heating the reaction vessel receiving element, and a cooling device for cooling the reaction vessel. The invention is characterized by the fact that the reaction vessel receiving element is divided into several segments. The individual segments are thermally decoupled from one another, and each segment is assigned a heating device which may be actuated independently of the others. By means of the segmentation of the reaction vessel receiving element, it is possible for zones to be set and held at different temperatures. Because the reaction vessel receiving element is suitable for receiving standard microtiter plates, the device according to the invention may be integrated in existing process sequences.
Owner:APPL BIOSYSTEMS INC

Microfluidic protein crystallography

The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
Owner:CALIFORNIA INST OF TECH

High throughput screening of crystallization of materials

High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Owner:RGT UNIV OF CALIFORNIA +1

Thin-film thermoelectric cooling and heating devices for DNA genomic and proteomic chips, thermo-optical switching circuits, and IR tags

A thermoelectric cooling and heating device including a substrate, a plurality of thermoelectric elements arranged on one side of the substrate and configured to perform at least one of selective heating and cooling such that each thermoelectric element includes a thermoelectric material, a Peltier contact contacting the thermoelectric material and forming under electrical current flow at least one of a heated junction and a cooled junction, and electrodes configured to provide current through the thermoelectric material and the Peltier contact. As such, the thermoelectric cooling and heating device selectively biases the thermoelectric elements to provide on one side of the thermolectric device a grid of localized heated or cooled junctions.
Owner:LAIRD THERMAL SYST INC

Droplet Operations Platform

The invention relates to a droplet actuator device and methods for integrated sample preparation and analysis of a biological sample. A droplet actuator device is provided for conducting droplet operations. The droplet actuator device may include a bottom substrate and a top substrate separated from each other to form a gap therebetween; an arrangement of droplet operations electrodes arranged on one or both of the bottom and / or top substrates for conducting droplet operations thereon; a reagent storage layer comprising one or more compartments bound to the top substrate; and one or more openings arranged to provide a fluidic path from the one or more compartments into the gap, upon breach of a breachable seal separating the one or more compartments and openings.
Owner:ADVANCED LIQUID LOGIC

Device for thermal cycling

An apparatus for performing temperature cycling, comprising a micro channel reactor structure (46, 48, 50), and having a heating structure (b1, b2, B1, B2) defining a desired temperature profile. A preferred embodiment of a heating element structure comprises a pattern of areas of a material capable of providing heat when energized, disposed over said micro channel reactor structure.
Owner:GYROS

Method and apparatus for effecting rapid thermal cycling of samples in microtiter plate size

A method and apparatus for effecting rapid thermal cycling of samples, by producing a high-velocity air flow through a closed loop flow path, and energizing an electrical heater within the closed loop flow path to heat the air flowing therethrough to a desired temperature. A sample holder is introduced into the closed loop flow path for exposing the sample holder to the high-velocity heated air flowing therethrough for rapidly heating the sample. The sample is rapidly cooled to a desired temperature by de-energizing the electrical heater, and opening an air outlet from the closed loop flow path, while continuing to produce the high-velocity air flow therethrough.
Owner:INTEGRATED GENETIC DEVICES

Apparatus and method for amplifying a polynucleotide

The present invention provides an apparatus for amplifying a polynucleotide, comprising a substrate, a microflow channel system disposed in the substrate and comprising a sample inlet port, a sample flow channel extending from the sample inlet port, and a polynucleotide polymerization reaction chamber in fluid communication with the sample flow channel, a first insulation groove formed around the reaction chamber, and a means for regulating a temperature of the reaction chamber. Accordingly, a multiple chamber device for amplifying a polynucleotide, comprising multiple polymerization reaction chambers formed in a substrate can be manufactured.
Owner:SAMSUNG ELECTRONICS CO LTD

High throughput screening of crystallization of materials

High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
Owner:CALIFORNIA INST OF TECH +1

Chemical processing microsystems comprising high-temperature parallel flow microreactors

A chemical processing microsystem useful for identifying and optimizing materials (e.g., catalysts) that enhance chemical processes or for characterizing and / or optimizing chemical processes is disclosed. The chemical processing microsystem comprises a plurality of microreactors 600 and, in a preferred embodiment, a plurality of microseparators 900 integral with the chemical processing microsystem 10. The microreactors 600 are preferably diffusion-mixed microreactors formed in a plurality of laminae that include a modular, interchangeable candidate-material array 100. The material array 100 comprises a plurality of different candidate materials (e.g., catalysts), preferably arranged at separate, individually addressable portions of a substrate (e.g., wafer). The microseparators 900 are similarly formed in a plurality of laminae that include a modular, interchangeable adsorbent array 700. The adsorbent array 700 comprises one or more adsorbents, preferably arranged at separate, individually addressable portions of a substrate to spatially correspond to the plurality of different candidate materials. Modular microfluidic distribution systems are also disclosed. The chemical processing microsystem can be integrated into a material evaluation system that enables a comprehensive combinatorial material science research program.
Owner:FREESLATE

Parallel flow reactor having improved thermal control

Parallel flow chemical processing systems, such as parallel flow chemical reaction systems are disclosed. These systems are adapted to simultaneously and independently vary temperature between separate flow channels, preferably by employing separate, individual heating elements in thermal communication with each of four or more parallel flow reactors. The flow reactors are preferably isolated from each other using a thermal isolation system comprising fluid-based heat exchange. In preferred embodiments, the axial heat flux can be fixedly or controllably varied.
Owner:FREESLATE

Microfluidic Device

The present invention relates to a method of fabricating a microfluidic device including at least two substrates provided with a fluid channel, comprising the steps of: a) etching at least a channel and one or more fluid ports in a first and / or a second substrate; b) depositing a first layer on a surface of the second substrate; c) partially removing the first layer in accordance with a predefined geometry; d) depositing a second layer on top of the first layer and the substrate surface; e) planarizing the second layer so as to smooth the upper surface thereof; f) aligning the first and second substrate; and g) bonding the first substrate on the planarized second layer of the second substrate.
Owner:MICRONIT MICROTECHNOLOGIES BV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products