Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

127results about "Mechanically effected encryption" patented technology

Method and system for performing permutations using permutation instructions based on modified omega and flip stages

The present invention provides permutation instructions which can be used in software executed in a programmable processor for solving permutation problems in cryptography, multimedia and other applications. The permute instructions are based on an omega-flip network comprising at least two stages in which each stage can perform the function of either an omega network stage or a flip network stage. Intermediate sequences of bits are defined that an initial sequence of bits from a source register are transformed into. Each intermediate sequence of bits is used as input to a subsequent permutation instruction. Permutation instructions are determined for permuting the initial source sequence of bits into one or more intermediate sequence of bits until a desired sequence is obtained. The intermediate sequences of bits are determined by configuration bits. The permutation instructions form a permutation instruction sequence, of at least one instruction. At most 21 gr / m permutation instructions are used in the permutation instruction sequence, where r is the number of k-bit subwords to be permuted, and m is the number of network stages executed in one instruction. The permutation instructions can be used to permute k-bit subwords packed into an n-bit word, where k can be 1, 2, . . . , or n bits, and k*r=n.
Owner:TELEPUTERS

Method And System For Computational Transformation

The invention generally relates to computational transformation process, which has applications in cryptography, random number generation, hash code generation etc. The computational transformation module uses a keyset, which is designed using a two dimensional array. Since the process of forward transformation used in the invention is a symmetric encryption process and if used to send data securely over a communications network, the same keyset needs to be present at the sending computer to encrypt the data and the receiving computer to go through a reverse transformation and decrypt the data. When the first ‘n’ bit block of input-data is transformed into the first ‘m’ bit block of output-data, the keyset is transformed into a different keyset based on a nonlinear or one-way transformation on the keyset. The next input block is encrypted using a transformed keyset, hence satisfying Shanons theory of perfect secrecy. It uses the same logic with additional parameters and operations to create random numbers and unique hash codes. The computational transformation process is a one-way process which is based on a principle where given the input value ‘x’, it is easy to transform ‘x’ to ‘y’ using a function ‘F’ i.e. F(x)=y. However, given ‘y’ in the range of F, it is hard to find an x such that F(x)=y. In this system, the same transformation function and same keyset is used for both encryption as well as decryption with only a change in the constant value.
Owner:SINGANAMALA PRAHLAD P
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products