Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

33results about How to "Not improve" patented technology

Structure and fabrication of field-effect transistor using empty well in combination with source/drain extensions or/and halo pocket

ActiveUS20100244130A1Improve performanceSemiconductor fabrication platform extremely versatileSolid-state devicesSemiconductor/solid-state device manufacturingGate dielectricNon symmetric
Insulated-gate field-effect transistors (“IGFETs”), both symmetric and asymmetric, suitable for a semiconductor fabrication platform that provides IGFETs for analog and digital applications, including mixed-signal applications, utilize empty-well regions in achieving high performance. A relatively small amount of semiconductor well dopant is near the top of each empty well. Each IGFET (100, 102, 112, 114, 124, or 126) has a pair of source / drain zones laterally separated by a channel zone of body material of the empty well (180, 182, 192, 194, 204, or 206). A gate electrode overlies a gate dielectric layer above the channel zone. Each source / drain zone (240, 242, 280, 282, 520, 522, 550, 552, 720, 722, 752, or 752) has a main portion (240M, 242M, 280M, 282M, 520M, 522M, 550M, 552M, 720M, 722M, 752M, or 752M) and a more lightly doped lateral extension (240E, 242E, 280E, 282E, 520E, 522E, 550E, 552E, 720E, 722E, 752E, or 752E). Alternatively or additionally, a more heavily doped pocket portion (250 or 290) of the body material extends along one of the source / drain zones. When present, the pocket portion typically causes the IGFET to be an asymmetric device.
Owner:NAT SEMICON CORP

Structure and fabrication of field-effect transistor using empty well in combination with source/drain extensions or/and halo pocket

ActiveUS8410549B2Improve performanceSemiconductor fabrication platform extremely versatileSolid-state devicesSemiconductor/solid-state device manufacturingDopantGate dielectric
Insulated-gate field-effect transistors (“IGFETs”), both symmetric and asymmetric, suitable for a semiconductor fabrication platform that provides IGFETs for analog and digital applications, including mixed-signal applications, utilize empty-well regions in achieving high performance. A relatively small amount of semiconductor well dopant is near the top of each empty well. Each IGFET (100, 102, 112, 114, 124, or 126) has a pair of source / drain zones laterally separated by a channel zone of body material of the empty well (180, 182, 192, 194, 204, or 206). A gate electrode overlies a gate dielectric layer above the channel zone. Each source / drain zone (240, 242, 280, 282, 520, 522, 550, 552, 720, 722, 752, or 752) has a main portion (240M, 242M, 280M, 282M, 520M, 522M, 550M, 552M, 720M, 722M, 752M, or 752M) and a more lightly doped lateral extension (240E, 242E, 280E, 282E, 520E, 522E, 550E, 552E, 720E, 722E, 752E, or 752E). Alternatively or additionally, a more heavily doped pocket portion (250 or 290) of the body material extends along one of the source / drain zones. When present, the pocket portion typically causes the IGFET to be an asymmetric device.
Owner:NAT SEMICON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products