Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

294results about "Solar panel attachments" patented technology

Aircraft control method

This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Traveling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft includes hinges and actuators capable of providing an adjustable dihedral for the wing. The actuators can be motors or control surfaces. Alternately, the actuators can be movable masses within the wing, which may be capable of deforming the wing to alter the aerodynamics of the wing, and thereby actuate the hinges. Because of wing dihedral, the aircraft includes motors both above and below the center of drag, and the aircraft uses differential thrust to control aircraft pitch. The aircraft has a wide variety of applications, which include serving as a long term high altitude platform that serves to link a ground station using radio wave signals and a satellite using optical signals.
Owner:AEROVIRONMENT INC

Aircraft control method

This disclosure provides a solar rechargeable aircraft that is inexpensive to produce, is steerable, and can remain airborne almost indefinitely. The preferred aircraft is a span-loaded flying wing, having no fuselage or rudder. Traveling at relatively slow speeds, and having a two-hundred foot wingspan that mounts photovoltaic cells on most all of the wing's top surface, the aircraft uses only differential thrust of its eight propellers to turn. Each of five segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other segments, to avoid loading them. Five two-sided photovoltaic arrays, in all, are mounted on the wing, and receive photovoltaic energy both incident on top of the wing, and which is incident also from below, through a bottom, transparent surface. The aircraft includes hinges and actuators capable of providing an adjustable dihedral for the wing. The actuators can be motors or control surfaces. Alternately, the actuators can be movable masses within the wing, which may be capable of deforming the wing to alter the aerodynamics of the wing, and thereby actuate the hinges. Because of wing dihedral, the aircraft includes motors both above and below the center of drag, and the aircraft uses differential thrust to control aircraft pitch. The aircraft has a wide variety of applications, which include serving as a long term high altitude platform that serves to link a ground station using radio wave signals and a satellite using optical signals.
Owner:AEROVIRONMENT INC

Energy management system of solar unmanned aerial vehicle

The invention discloses an energy management system of a solar unmanned aerial vehicle. The system comprises a solar battery assembly, a DC-DC converter, a lithium battery assembly, a lithium battery protection circuit, an energy management control module, an unmanned aerial vehicle master control module and an unmanned aerial vehicle power supply unit. The energy management control module comprises a maximum power tracing module, a battery state detection module, an intelligent charging and discharging module and an energy management controller; the solar battery assembly converts solar energy into electrical energy, the lithium battery assembly serves as the energy storage component of the unmanned aerial vehicle, the energy management control module can monitor the operating states of the solar battery and the lithium battery in real time, controls the energy distribution of the unmanned aerial vehicle, and chooses the appropriate power supply mode according to different situations. The energy management system of the solar unmanned aerial vehicle combines the advantages of the solar battery and the lithium battery, reasonably controls and distributes energy sources for use, improves the use ratio of the solar battery and the lithium battery, effectively overcomes the defect of insufficient energy storage of the existing unmanned aerial vehicle, and increases the endurance of the unmanned aerial vehicle.
Owner:CHINA JILIANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products