Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

37results about How to "Cancel improvement" patented technology

Variable gain active noise cancelling system with improved residual noise sensing

An active noise cancellation system includes a series of features for more effective cancellation, greater reliability, and improved stability. A particular feature adapted for headset systems includes locating a residual microphone radially offset from the center of a sound generator to detect a signal more similar to that incident upon the eardrum of the user. In addition, an open back headset design includes perforations on the side of the headset instead of the back, so that the perforations are less susceptible to inadvertent blockage. The system also includes a mechanism for detecting changes in the acoustic characteristics of the environment that may be caused, for example, by pressure exerted upon the earpieces, and that may destabilize the cancellation system. The system automatically responds to such changes, for example, by reducing the gain or the frequency response of the system to preserve stability. The system further includes other methods for detecting imminent instability and compensating, such as detecting the onset of signals within enhancement frequencies characteristic of the onset of instability, and adjusting the gain or frequency response of the system or suppressing the enhanced signals. The system further includes a mechanism for conserving battery life by turning the system off when sound levels are low, or adjusting the power supply to the system to correspond to the current power requirements of the system.
Owner:NCT GROUP

Adaptive cancellation of multi-path interferences

ActiveUS20110319044A1Minimize and eliminate signalMinimize or eliminate unwanted signals arrivingRadio transmissionIntegratorInterference canceller
A multi-path signal interference cancellation system cancels multiple time delayed signal components of a multi-path interference signal received by a receive antenna and carried on a receiver transmission line of a radio receiver system. The interference cancellation system includes a plurality of adaptive interference canceller circuits, each of which has a synchronous detector, a signal controller and an integrator as essential parts of closed control loops defined by the canceller circuits. The integrator has gain and bandwidth characteristics associated therewith which are adjustable to adjust the gain and bandwidth of each closed control loop. An intensity profile of the multi-path interference signal is generated and stored in a memory. An intensity profile signal from the memory is provided to the integrator of each adaptive interference canceller circuit to adjust the gain and bandwidth of the integrator and the loop in which it is situated to maximize the error detection residual signal-to-noise ratio of each adaptive interference canceller circuit. Each adaptive interference canceller circuit generates a cancellation signal from which a synthesized cancellation signal is generated and effectively injected onto the receiver transmission line to cancel the multiple time delayed signal components of the multi-path interference signal carried thereon so that the radio receiver of the radio receiver system only receives a desired signal.
Owner:HARRIS CORP

Adaptive cancellation of multi-path interferences

ActiveUS8428542B2Minimize or eliminate unwanted signals arrivingEnhance degree of adaptive cancellationRadio transmissionIntegratorInterference canceller
A multi-path signal interference cancellation system cancels multiple time delayed signal components of a multi-path interference signal received by a receive antenna and carried on a receiver transmission line of a radio receiver system. The interference cancellation system includes a plurality of adaptive interference canceller circuits, each of which has a synchronous detector, a signal controller and an integrator as essential parts of closed control loops defined by the canceller circuits. The integrator has gain and bandwidth characteristics associated therewith which are adjustable to adjust the gain and bandwidth of each closed control loop. An intensity profile of the multi-path interference signal is generated and stored in a memory. An intensity profile signal from the memory is provided to the integrator of each adaptive interference canceller circuit to adjust the gain and bandwidth of the integrator and the loop in which it is situated to maximize the error detection residual signal-to-noise ratio of each adaptive interference canceller circuit. Each adaptive interference canceller circuit generates a cancellation signal from which a synthesized cancellation signal is generated and effectively injected onto the receiver transmission line to cancel the multiple time delayed signal components of the multi-path interference signal carried thereon so that the radio receiver of the radio receiver system only receives a desired signal.
Owner:HARRIS CORP

Low noise inter-symbol and inter-carrier interference cancellation for multi-carrier modulation receivers

ActiveUS20070053453A1Minimize cross-couplingEnhance cancellationError preventionLine-faulsts/interference reductionCarrier signalIntersymbol interference
A MCM (multi-carrier modulation) receiver that utilizes a plurality sub-carriers (e.g., tones) to transmit information in a frame-by-frame manner. Identify a first subset of sub-carriers that have negligible ISI (inter-symbol interference) and ICI (inter-carrier interference), and a second subset of sub-carriers that ISI/ICI cancellation is needed to improve the performance. For sub-carriers in the first subset, conventional equalization is performed to obtained soft decisions. For those sub-carriers in the second subset, perform ISI cancellation then ICI cancellation along with equalization. For sub-carriers in the second subset, identify a series of third subsets (one for each of the sub-carriers in the second subset) that cause interference to the sub-carriers in the second set. For sub-carriers in the third subset, identify a series of fourth subsets from a previous frame that cause interference to the sub-carriers in the third set. For each element in the third subset, perform ISI cancellation to eliminate the interference from the elements in the fourth subset from the previous frame to obtain a plurality of intermediate decisions. For each element in the second subset, perform a combined equalization and ICI cancellation using said intermediate decisions. The selection of the first subset, the second subset, the third subset, and the fourth subset are based on examining the frequency response of the communication channel.
Owner:REALTEK SEMICON CORP

Low noise inter-symbol and inter-carrier interference cancellation for multi-carrier modulation receivers

A MCM (multi-carrier modulation) receiver that utilizes a plurality sub-carriers (e.g., tones) to transmit information in a frame-by-frame manner. Identify a first subset of sub-carriers that have negligible ISI (inter-symbol interference) and ICI (inter-carrier interference), and a second subset of sub-carriers that ISI / ICI cancellation is needed to improve the performance. For sub-carriers in the first subset, conventional equalization is performed to obtained soft decisions. For those sub-carriers in the second subset, perform ISI cancellation then ICI cancellation along with equalization. For sub-carriers in the second subset, identify a series of third subsets (one for each of the sub-carriers in the second subset) that cause interference to the sub-carriers in the second set. For sub-carriers in the third subset, identify a series of fourth subsets from a previous frame that cause interference to the sub-carriers in the third set. For each element in the third subset, perform ISI cancellation to eliminate the interference from the elements in the fourth subset from the previous frame to obtain a plurality of intermediate decisions. For each element in the second subset, perform a combined equalization and ICI cancellation using said intermediate decisions. The selection of the first subset, the second subset, the third subset, and the fourth subset are based on examining the frequency response of the communication channel.
Owner:REALTEK SEMICON CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products