Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

43 results about "Corneal surgery" patented technology

Method and apparatus for laser surgery of the cornea

A laser-based method and apparatus for corneal surgery. The present invention is intended to be applied primarily to ablate organic materials, and human cornea in particular. The invention uses a laser source which has the characteristics of providing a shallow ablation depth (0.2 microns or less per laser pulse), and a low ablation energy density threshold (less than or equal to about 10 mJ / cm2), to achieve optically smooth ablated corneal surfaces. The preferred laser includes a laser emitting approximately 100–50,000 laser pulses per second, with a wavelength of about 198–300 nm and a pulse duration of about 1–5,000 picoseconds. Each laser pulse is directed by a highly controllable laser scanning system. Described is a method of distributing laser pulses and the energy deposited on a target surface such that surface roughness is controlled within a specific range. Included is a laser beam intensity monitor and a beam intensity adjustment means, such that constant energy level is maintained throughout an operation. Eye movement during an operation is corrected for by a corresponding compensation in the location of the surgical beam. Beam operation is terminated if the laser parameters or the eye positioning is outside of a predetermined tolerable range. The surgical system can be used to perform surgical procedures including removal of corneal scar, making incisions, cornea transplants, and to correct myopia, hyperopia, astigmatism, and other corneal surface profile defects.
Owner:LAI SHUI T

Shielded intraocular probe for improved illumination or therapeutic application of light

ActiveUS20050245916A1Diminishes unwanted glareLaser surgeryEndoscopesKeratorefractive surgeryForceps
An intraocular light probe has a mask or shield affixed at its distal end thereof which forms a directed light beam for intraocular illumination of target tissues or intraocular application of therapeutic light. The mask or shield serves to more fully focus, intensify and direct the beam toward the target tissues. The mask or shield also helps direct light away from other tissues and away from the eyes of the surgeon. This lessens unwanted glare. By placing a light probe beneath a surgical instrument such as a phacoemulsifier or vitrector, laser, cutting instrument (e.g., scissors or knife), forceps or probe/manipulator, whether as part of or separate from an infusion sleeve, a mask or shield effect is created. This has the same benefits of directing the beam toward target tissues, away from other tissues and away from the eyes of the surgeon. The mask or shield is opaque or semi-opaque and made of a soft, semi-rigid or rigid material. The shield can be rigid enough to serve as the shaft of an instrument with a probe or manipulator at its distal tip. It may also be reflective on the side adjacent to the fiber bundle to help direct, magnify, and intensify the beam of light. The shape of the shield can be flat, curved or circular with an opening along one side. The mask/shield can be removed from the fiberoptic light for sterilization. The device of the invention is preferably introduced into the eye via the primary or side-port incision to provide intraocular cross-lighting of tissues during surgical procedures such as cataract surgery, corneal surgery, vitrectomy, intraocular lens implantation, refractive surgery, glaucoma surgery and vitreo/retinal surgery.
Owner:CONNOR CHRISTOPHER S

Method and Apparatus for Laser Surgery of the Cornea

A laser-based method and apparatus for corneal surgery. The present invention is intended to be applied primarily to ablate organic materials, and human cornea in particular. The invention uses a laser source which has the characteristics of providing a shallow ablation depth (0.2 microns or less per laser pulse), and a low ablation energy density threshold (less than or equal to about 10 mJ/cm.sup.2), to achieve optically smooth ablated corneal surfaces. The preferred laser includes a laser emitting approximately 100-50,000 laser pulses per second, with a wavelength of about 198-300 nm and a pulse duration of about 1-5,000 picoseconds. Each laser pulse is directed by a highly controllable laser scanning system. Described is a method of distributing laser pulses and the energy deposited on a target surface such that surface roughness is controlled within a specific range. Included is a laser beam intensity monitor and a beam intensity adjustment means, such that constant energy level is maintained throughout an operation. Eye movement during an operation is corrected for by a corresponding compensation in the location of the surgical beam. Beam operation is terminated if the laser parameters or the eye positioning is outside of a predetermined tolerable range. The surgical system can be used to perform surgical procedures including removal of corneal scar, making incisions, cornea transplants, and to correct myopia, hyperopia, astigmatism, and other corneal surface profile defects.
Owner:LAI SHUI T
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products