Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

155 results about "Ganglion-Like Cell" patented technology

A ganglion is a nerve cell cluster or a group of nerve cell bodies located in the autonomic nervous system and sensory system. Ganglia house the cell bodies of afferent nerves (input nerve fibers) and efferent--output/motor--nerve fibers, or axons. A pseudoganglion looks like a ganglion, but only has nerve fibers and has no nerve cell bodies.

Administration of anti-inflammatory drugs into the central nervous system

Apparatus is provided for delivering a Non Steroidal Anti-Inflammatory Drug (NSAID) supplied to a body of a subject for delivery to at least a portion of a central nervous system (CNS) of the subject via a systemic blood circulation of the subject, including a stimulator adapted to stimulate at least one site of the subject, so as to cause an increase in passage of the NSAID from the systemic blood circulation across a blood brain barrier (BBB) of the subject to the portion of the CNS, during at least a portion of the time that the NSAID is present in the blood, the site selected from the list consisting of: a sphenopalatine ganglion (SPG) of the subject, an anterior ethmoidal nerve of the subject, a posterior ethmoidal nerve of the subject, a communicating branch between an anterior ethmoidal nerve and a retro-orbital branch of an SPG of the subject, a communicating branch between a posterior ethmoidal nerve and a retro-orbital branch of an SPG of the subject, a greater palatine nerve of the subject, a lesser palatine nerve of the subject, a sphenopalatine nerve of the subject, a communicating branch between a maxillary nerve and an SPG of the subject, a nasopalatine nerve of the subject, a posterior nasal nerve of the subject, an infraorbital nerve of the subject, an otic ganglion of the subject, an afferent fiber going into the otic ganglion of the subject, an efferent fiber going out of the otic ganglion of the subject, a vidian nerve of the subject, a greater superficial petrosal nerve of the subject, and a lesser deep petrosal nerve of the subject.
Owner:BRAINSGATE LTD

Stimulation for treating brain events and other conditions

Apparatus for treatment is provided, including one or more electrodes, configured to be applied to a site of a subject, and adverse cerebrovascular condition treatment functionality. The functionality comprises a control unit configured to drive the one or more electrodes to apply electrical stimulation to the site during a plurality of stimulation periods which includes at least first and last stimulation periods, set an inter-period interval between initiation of the first stimulation period and initiation of the last stimulation period to be at least 24 hours, and configure the stimulation during the first and last stimulation periods to induce at least one neuroprotective occurrence selected from the group consisting of: an increase in cerebral blood flow (CBF) of the subject, and a release of one or more neuroprotective substances. The site is selected from the group consisting of: a sphenopalatine ganglion (SPG), a greater palatine nerve, a lesser palatine nerve, a sphenopalatine nerve, a communicating branch between a maxillary nerve and an SPG, an otic ganglion, an afferent fiber going into the otic ganglion, an efferent fiber going out of the otic ganglion, an infraorbital nerve, a vidian nerve, a greater superficial petrosal nerve, and a lesser deep petrosal nerve. Additional embodiments are also described.
Owner:BRAINSGATE LTD

Method and apparatus for visual neural stimulation

Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred μm. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We utilized micro-fabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically below 0.1 mC / cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of less than 100 pC. Stimulation remained effective after several hours and at high frequencies. To demonstrate that closely spaced electrodes can elicit independent ganglion cell responses, we utilized the multi-electrode array to stimulate several nearby ganglion cells simultaneously. From these data we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
Owner:SALK INST FOR BIOLOGICAL STUDIES +1

Frequency modulated stimulation strategy for cochlear implant system

InactiveUS20070239227A1Provide temporal informationReduce power consumptionElectrotherapyTectorial membraneBand-pass filter
A new speech processing strategy, termed Frequency Modulated Stimulation (FMS), is provided for use with a cochlear prosthetic. The FMS strategy advantageously mimics the neural firing patterns of the healthy cochlea by controlling when and where stimulation pulses are presented in the cochlea. The benefits of this approach are its simplicity and its ability to provide temporal information at relatively low power consumption. The stimulation that results has high temporal precision and a low pulse presentation rate. The power efficiency of the FMS strategy is three to six times greater than that of a CIS strategy with comparable thresholds. The FMS strategy depends on the probability that at any point along the basilar membrane the ganglion cells are most likely to respond during the upward motion of the basilar membrane, when the hair cells are pushed toward the tectorial membrane. At low frequencies, this probability accounts for phase locking of the neurons to each peak of the motion. At high frequency locations, phase locking occurs at integer multiples of the vibration cycles because the vibration of the membrane is faster than the refractory period of the neurons. The FMS strategy provided by the invention takes advantage of the natural behavior of the ganglion cells by outputting a biphasic pulse at the preset integer multiples of the vibration cycles. Integer multiples are determined by counting the positive-to-negative zero crossings, or equivalent frequency counting, at the output of the band pass filters that decompose the incoming audio signal(s).
Owner:ADVNACED BIONICS LLC

Method and Apparatus for Visual Neural Stimulation

Existing epiretinal implants for the blind are designed to electrically stimulate large groups of surviving retinal neurons using a small number of electrodes with diameters of several hundred μm. To increase the spatial resolution of artificial sight, electrodes much smaller than those currently in use are desirable. In this study we stimulated and recorded ganglion cells in isolated pieces of rat, guinea pig, and monkey retina. We utilized micro-fabricated hexagonal arrays of 61 platinum disk electrodes with diameters between 6 and 25 μm, spaced 60 μm apart. Charge-balanced current pulses evoked one or two spikes at latencies as short as 0.2 ms, and typically only one or a few recorded ganglion cells were stimulated. Application of several synaptic blockers did not abolish the evoked responses, implying direct activation of ganglion cells. Threshold charge densities were typically below 0.1 mC / cm2 for a pulse duration of 100 μs, corresponding to charge thresholds of less than 100 pC. Stimulation remained effective after several hours and at high frequencies. To demonstrate that closely spaced electrodes can elicit independent ganglion cell responses, we utilized the multi-electrode array to stimulate several nearby ganglion cells simultaneously. From these data we conclude that electrical stimulation of mammalian retina with small-diameter electrode arrays is achievable and can provide high temporal and spatial precision at low charge densities. We review previous epiretinal stimulation studies and discuss our results in the context of 32 other publications, comparing threshold parameters and safety limits.
Owner:SECOND SIGHT MEDICAL PRODS +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products