Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

30 results about "Magnetic resonance spectroscopic imaging" patented technology

Magnetic resonance spectroscopic imaging (MRSI) is a noninvasive imaging method that provides spectroscopic information in addition to the image that is generated by MRI alone. Whereas traditional magnetic resonance imaging (MRI) generates a black-and-white image in which brightness is determined primarily by the T1 or T2 relaxation times of the tissue being imaged, the spectroscopic information obtained in an MRSI study can be used to infer further information about cellular activity (metabolic information). For example, in the context of oncology, an MRI scan may reveal the shape and size of a tumor, while an MRSI study provides additional information about the metabolic activity occurring in the tumor. MRSI can be performed on a standard MRI scanner, and the patient experience is the same for MRSI as for MRI. MRSI has broad applications in medicine, including oncology and general physiological studies.

Magnetic resonance spectroscopy with real-time correction of motion and frequency drift, and real-time shimming

This invention relates to localized magnetic resonance spectroscopy (MRS) and to magnetic resonance spectroscopic imaging (MRSI) of the proton NMR signal, specifically to a magnetic resonance spectroscopy (MRS) method to measure a single volume of interest and to a magnetic resonance spectroscopic imaging method with at least one spectral dimension and up to three spatial dimensions. MRS and MRSI are sensitive to movement of the object to be imaged and to frequency drifts during the scan that may arise from scanner instability, field drift, respiration, and shim coil heating due to gradient switching. Inter-scan and intra-scan movement leads to line broadening and changes in spectral pattern secondary to changes in partial volume effects in localized MRS. In MRSI movement leads to ghosting artifacts across the entire spectroscopic image. For both MRS an MRSI movement changes the magnetic field inhomogeneity, which requires dynamic reshimming. Frequency drifts in MRS and MRSI degrade water suppression, prevent coherent signal averaging over the time course of the scan and interfere with gradient encoding, thus leading to a loss in localization. It is desirable to measure object movement and frequency drift and to correct object motion and frequency drift without interfering with the MRS and MRSI data acquisition.
Owner:POSSE STEFAN

System, method and software arrangement for analyzing and correlating molecular profiles associated with anatomical structures

InactiveUS20090030618A1Accurate detection and diagnosisMagnetic measurementsBiological testingAnatomical structuresMetabolite
A system, method and software arrangement according to exemplary embodiments of the present invention are provided which can use molecular profiles obtained from unaltered human tissue specimens for clinical purposes including disease diagnoses and treatment evaluations. For example, spatial distributions of chemical species including metabolites within the tissue may be obtained using radiological techniques such as magnetic resonance spectroscopy imaging. Disease-specific profiles may be obtained by comparing the distributions of chemical species obtained in ex vivo tissues with pathological observations made on them using statistical analysis. The disease-specific profiles may then be correlated with in vivo or ex vivo molecular profiles to obtain spatial maps that can provide a more sensitive and accurate detection of diseased tissue. Thus, such exemplary systems, methods and software arrangements can include the ability to receive information relating to the distribution of at least three chemical species in the tissue of interest, compare this information statistically to a predetermined profile and, based on the statistical correlation between the information and the profile, determine certain characteristics of the tissue of interest such as, e.g., the presence or absence of diseased tissue.
Owner:THE GENERAL HOSPITAL CORP

Frequency-domain-based method for lipid and water suppression treatment of magnetic resonance spectrum imaging data

The invention belonging to the field of medical imaging provides a frequency-domain-based method for lipid and water suppression treatment of magnetic resonance spectrum imaging data. The method comprises: one-dimensional Fourier transform is carried out on collected single voxel magnetic resonance spectrum time-domain data to obtain a frequency-domain FID signal; according to prior knowledge, four lipid peaks and one water signal frequency range are determined; a nonlinear parameter attenuation coefficient in a spectrum time-domain model by using a singular value decomposition method; on the basis of a spectrum peak frequency in the prior knowledge and the attenuation coefficient obtained by quantification, the amplitude and phase of a linear parameter are estimated by using an amplitude-phase adaptive FIR filtering method; the frequency range is changed and the previous two steps are executed circularly until quantification of the four group of lipid and water signal parameters is completed; the time-domain FID model and the lipid and water signal quantification parameters form lipid and water time-domain signals; and one-dimensional Fourier transform is carried out on the time-domain signals, difference processing is carried out on the frequency domain and an original spectral signal, thereby obtaining magnetic resonance spectrum imaging data after lipid and water suppression treatment.
Owner:杭州全景医学影像诊断有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products