Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

481results about "Converting sensor output mechanically" patented technology

Contactless angular position sensor and method for sensing angular position of a rotatable shaft

A contactless rotary shaft position sensor provides for precision computation of shaft angle for a wide range of input shaft rotational angles. The sensor includes two annular two-pole magnets which are connected by a precision, motion-transmitting gear train. An optional second gear train between one of the magnets and the input shaft can provide additional angular rotation scaling to accurately measure either fractional or a large number of multiple turns of the input shaft. The gear ratios are selected such that one of the magnets does not rotate more than one revolution. Pairs of ratiometric Hall-effect or magnetoresistive sensors provide differential voltage signals which are used for sensing angular position of each magnet over a full 360 degrees of rotation. The single-turn magnet provides an absolute, coarse indication of input shaft rotation with a typical accuracy of 2%. The gear ratio between the magnets produces several turns of the second magnet for each turn of the single-turn magnet. Since the gear ratio between the magnets is fixed, the angle sensed for the multi-turn magnet can be predicted from the position of the single-turn magnet. This is compared to the multi-turn magnet's actual sensed rotation. The result is an improvement in accuracy directly proportional to the gear ratio between the magnets. Computation of the individual magnet rotation angles and the input shaft angle is performed using a microprocessor and appropriate signal conditioning circuits. Utilizing two magnets, input shaft rotation can be accurately measured to within 0.1% of maximum range.
Owner:BVR TECH

Multi-turn angle transducer

A multiturn angle measuring device (1) with a first dimensional standard (9) that is non-rotatably connected to an input shaft (2) and which is sampled by a first scanning unit (10) to determine the angular position of the input shaft. Additional dimensional standards (11, 12, 13) measure the number of turns of the input shaft (2) and are arranged in parallel to each other. The rotational speed of each additional dimensional standard (11, 12, 13) is reduced by means of a reduction gearing from the preceding dimensional standard (9, 11, 12). A scanning device (21, 22, 23) for the sampling of each dimensional standard (11, 12, 13) is arranged on a circuit board (6). To provide a multiturn shaft encoder able to measure a high number of turns, even at high rotational speeds and/or large diameter input shafts, with compact construction and comparatively few multiturn stages, the input drive gear (40) fixed to the input shaft (2) and the first driven transmission gear (41) have axes of rotation (D40, D41) that are not parallel to each other. The flanks of the teeth (Z40, Z41) of the input drive gear (40) and of the wheel (411) of the first driven transmission gear (41) are not parallel to the axes of rotation (D40, D41) of the respective gears (40, 41), and the number of teeth (Z40) of the input gear (40) is smaller than the number of teeth (Z41) of the wheel (411) of the first transmission gear (41). The following transmission gears are again arranged parallel to the input shaft, and the drive pinion (412) of the first transmission gear (41) and the driven wheel of the second transmission gear (31) have helical gears.
Owner:SICK STEGMANN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products