Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

39results about "Demodulation" patented technology

Automatic iip2 calibration architecture

ActiveUS20080182537A1Minimize circuit overheadEasing testing requirementReceivers monitoringDemodulationWireless transceiverEngineering
An integrated automatic IIP2 calibration architecture for wireless transceivers is disclosed. The architecture enables a wireless transceiver to generate a test radio frequency (RF) signal having a second order tone with minimal additional circuitry. In particular, the test RF signal is generated using a combination of native transceiver circuits and test adaptor circuits. Native transceiver circuits are those circuits implemented on the transceiver chip for executing native transceiver functions during normal operation, which can be used for generating the test (RF) signal. Test adaptor circuits are added to the transceiver chip, more specifically to the native circuits, for enabling the native circuits to generate the test RF signal in a self-test mode of operation. Circuits for implementing a particular IIP2 minimizing scheme can be included on the transceiver chip for automatic IIP2 calibration during the self-test mode of operation.
Owner:ICERA CANADA ULC

Second intercept point (IP2) calibrator and method for calibrating ip2

A second intercept point (IP2) calibrator and a method for calibrating IP2 are disclosed. The IP2 calibrator and the method for calibrating IP2 remove any direct current (DC) offset by comparing a common-mode reference voltage with the common-mode voltage measured between a first output terminal and a second output terminal of a mixer, and calibrates the IP2 of the mixer by comparing the common-mode voltage with a calibration reference voltage. The calibration reference voltage is independent of the common-mode reference voltage and may be a quantized variable voltage generated according to digital control code.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and apparatus for processing a transmission signal in communication system

Disclosed are a method and apparatus for processing a transmission signal using a window function that changes a spectrum characteristic of a symbol. A transmission apparatus includes a symbol generator that generate a plurality of consecutive symbols, and a symbol windowing processor that is coupled with the symbol generator. The symbol windowing processor applies a first window function and a third window function that uses a difference between the first window and a second window, and changes a spectrum characteristic of each of the plurality of consecutive symbols, and processes neighboring symbols from among the plurality of consecutive symbols of which spectrum characteristics are changed, such that the symbols partially overlap one another.
Owner:SAMSUNG ELECTRONICS CO LTD

Transceiver including a weaved connection

A transceiver includes a local oscillation module, a transmitter section, and a receiver section. The local oscillation module is operable to generate a transmit local oscillation and a receive oscillation. The transmitter section includes a transmit mixing module and a transmit weaved connection that is operable to high frequency filter the transmit location oscillation. The transmit mixing module mixes the filtered transmit location oscillation with a transmit signal to produce an up-converted signal. The receiver section includes a receive mixing module and a receive weaved connection that is operable to high frequency filter the receive location oscillation. The receive mixing module mixes the filtered receive location oscillation with an RF received signal to produce a down-converted signal.
Owner:AVAGO TECH INT SALES PTE LTD

Phase error correction in a coherent receiver

A method and apparatus for correcting of phase errors in a coherent optical receiver are disclosed. Embodiments include a method for calculating a phase error between in-phase and quadrature-phase component signals, multiplying the phase error by one of the component signals and subtracting the result from the other component signal to output a corrected signal.
Owner:ALCATEL LUCENT SAS

Mobile communication apparatus

A transceiver suitable for larger scale of integration employs direct conversion reception for reducing the number of filters. Also, the number of VCOs is reduced by utilizing dividers to supply a receiver and a transmitter with locally oscillated signals at an RF band. Dividers each having a fixed division ratio are used for generating locally oscillated signals for the receiver, while a divider having a switchable division ratio are used for generating the locally oscillated signal for the transmitter. In addition, a variable gain amplifier for baseband signal is provided with a DC offset voltage detector and a DC offset canceling circuit for supporting high speed data communications to accomplish fast cancellation of a DC offset by eliminating intervention of a filter within a feedback loop for offset cancellation.
Owner:RENESAS ELECTRONICS CORP

Bidirectional readout circuit for detecting direction and amplitude of capacitive MEMS accelerometers

There is provided a bidirectional readout circuit for detecting direction and amplitude of an oscillation sensed at a capacitive microelectromechanical system (MEMS) accelerometer, the bidirectional readout circuit converting capacitance changes of the capacitive MEMS accelerometer into a time change amount by using high resolution capacitance-to-time conversion technology and outputting the time change amount as the direction and the amplitude of the oscillation by using time-to-digital conversion (TDC) technology, thereby detecting not only the amplitude of the oscillation but also the direction thereof, which is capable of being applied to various MEMS sensors.
Owner:ELECTRONICS & TELECOMM RES INST

Method and apparatus for direct conversion receiver correcting direct current offset

The present invention relates to a method and an apparatus for direct current offset calibration of a direct conversion receiver, a Direct Current (DC) offset calibration apparatus of a direct conversion receiver includes a plurality of variable gain amplifiers for amplifying an input signal based on a gain control value, a DC offset monitoring unit for monitoring a DC offset for an output signal of the plurality of variable gain amplifiers, a plurality of variable Digital to Analog Converters (DACs) for controlling a current applied to each of the plurality of variable gain amplifiers according to a current control code, and a DC offset cancellation unit for determining a current control code set which minimizes the DC offset value per preset gain control value, and thus the DC offset can be precisely cancelled without being affected by external factors such as a signal modulation method and heat and performance degradation of the receiver can be prevented.
Owner:SAMSUNG ELECTRONICS CO LTD

Quadrature modulation transmitter

There is provided a quadrature modulation transmitter which is capable of solving several problems of the conventional transmitter while performing the same function as the heterodyne transmitter or the digital IF transmitter, in which a circuit structure is simplified and a power consumption is reduced compared with the conventional transmitter. The quadrature modulation transmitter includes: a digital processing block for receiving an I-channel data, a Q-channel data and a clock signal, modulating the I-channel data or an inverted I-channel data into a first analog signal by means of an I-channel DAC according to a switching of an I-clock signal identical to the clock signal, and modulating the Q-channel data and an inverted Q-channel data into a second analog signal by means of a Q-channel DAC according to a switching of a Q-clock signal, the Q-clock signal being an inverted clock signal; and an analog processing block for receiving the first and second analog signals from the digital processing block, adding the first and second analog signals, converting the added signal into an RF domain signal through a mixing operation, and amplifying and transmitting the RF domain signal.
Owner:UNILOC 2017 LLC

Apparatus and method of local oscillator leakage cancellation

A transmitter includes a first mixer to generate a first output signal by up-converting a first baseband signal having a first DC offset component. A second mixer generates a second output signal by up-converting a second baseband signal having a second DC offset component. The second output signal is subtracted from the first output signal to generate a transmitter output signal. The transmitter output signal includes a local oscillator (LO) leakage signal caused by the first and / or second DC offset components. A third mixer produces a third output signal by up-converting the first DC offset component. A fourth mixer produces a fourth output signal by up-converting the second DC offset component. The fourth output signal is subtracted from the third output signal to generate a LO leakage cancellation signal. The LO leakage cancellation signal is subtracted from the transmitter output signal, thereby reducing a power of the LO leakage signal.
Owner:AVAGO TECH INT SALES PTE LTD

Fast-settling DC offset removal circuits with continuous cutoff frequency switching

A fast-setting DC offset removal circuit with continuous cutoff frequency switching is disclosed. In the preferred embodiment, the circuit is implemented using a pair of RC filters for receiving a differential signal pair and a continuous, variable resistance control circuit. The control circuit can be current-controlled or voltage controlled to provide fast settling of the received signal and the removal of the DC offset components. Additionally, by using a current-controlled control circuit, the cutoff frequency of the RC filter can be ramped from high to low in a continuous manner, thereby minimizing the generation of DC offsets.
Owner:MEDIATEK INC

Method and apparatus for direct conversion receiver correcting direct current offset

The present invention relates to a method and an apparatus for direct current offset calibration of a direct conversion receiver, a Direct Current (DC) offset calibration apparatus of a direct conversion receiver includes a plurality of variable gain amplifiers for amplifying an input signal based on a gain control value, a DC offset monitoring unit for monitoring a DC offset for an output signal of the plurality of variable gain amplifiers, a plurality of variable Digital to Analog Converters (DACs) for controlling a current applied to each of the plurality of variable gain amplifiers according to a current control code, and a DC offset cancellation unit for determining a current control code set which minimizes the DC offset value per preset gain control value, and thus the DC offset can be precisely cancelled without being affected by external factors such as a signal modulation method and heat and performance degradation of the receiver can be prevented.
Owner:SAMSUNG ELECTRONICS CO LTD

Mixer monitoring

In a method for checking the functionality of a mixer, the mixer is supplied with a high-frequency signal and a high-frequency comparison signal in order to generate a baseband signal. The amplitude of the high-frequency signal is modified as a function of time. A direct-current voltage component of the baseband signal which is output by the mixer is analyzed to determine the functionality of the mixer.
Owner:ROBERT BOSCH GMBH

High frequency signal generation apparatus

The apparatus comprises a first coupler configured to receive two output signals, having 180° phase difference, outputted from a first differential generator as two input signals, and output a first voltage signal generated by adding the two input signals and a second voltage signal corresponding to subtraction of the two input signals, a second coupler configured to receive two output signals, having 180° phase difference, outputted from a second differential generator as two input signals, and output a third voltage signal generated by adding the two input signals and a fourth voltage signal corresponding to subtraction of the two input signals, a coupling network connected to the first differential generator and the second differential generator and a third coupler configured to output a signal generated by adding the voltage signal outputted from the first coupler and corresponding voltage signal outputted from the second coupler.
Owner:KOREA UNIV RES & BUSINESS FOUND

Multi-frequency data communication service over multiple wireless access nodes

A wireless communication network delivers multi-frequency service to User Equipment (UE). A primary node receives signaling from the UE that indicates secondary nodes along with their frequencies and signal strengths. The primary node selects candidate nodes based on the signal strengths for the secondary nodes. The primary node determines potential intermodulation interference between the primary frequency and the frequencies for the candidate set. The primary node selects a qualifying set from the candidate set based on the potential intermodulation interference. The primary node determines communication performance for the qualifying set and selects a serving set from the qualifying set based on the communication performance. The primary node wirelessly transfers signaling to the UE identifying the serving set and transfers signaling to the serving set identifying the UE. The serving set of secondary access nodes wirelessly transfer user data to the UE over their frequencies responsive to the signaling.
Owner:T MOBILE INNOVATIONS LLC

Method and system for controlling the level of a data signal read from an optical disc

The invention relates to a method of controlling the level of an input readout signal read from an optical disc. The method proposes to use an amplification step for amplifying the input readout signal by an adjustable gain factor for generating an amplified output readout signal having an amplitude in the range [I min target, I max target]. The value of this gain is derived from a feedback loop control in charge of comparing the level of the output readout signal with that of target levels I min target and I max target, and deriving a gain value taking into account the level of the input readout signal. This loop control renders it possible to clamp the input readout signal, counteracting as a consequence the decrease of the input readout signal in the case of a reflectivity reduction of the optical disc. Use: Optical disc reader.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Fast-settling DC offset removal circuits with continuous cutoff frequency switching

A fast-setting DC offset removal circuit with continuous cutoff frequency switching is disclosed. In the preferred embodiment, the circuit is implemented using a pair of RC filters for receiving a differential signal pair and a continuous, variable resistance control circuit. The control circuit can be current-controlled or voltage controlled to provide fast settling of the received signal and the removal of the DC offset components. Additionally, by using a current-controlled control circuit, the cutoff frequency of the RC filter can be ramped from high to low in a continuous manner, thereby minimizing the generation of DC offsets.
Owner:MEDIATEK INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products