Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

191results about "Using photons" patented technology

Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor

A method of and apparatus for determining and controlling the inertial attitude of a spinning artificial satellite without using a suite of inertial gyroscopes. The method and apparatus operate by tracking three astronomical objects near the Earth's ecliptic pole and the satellite's and/or star tracker's spin axis and processing the track information. The method and apparatus include steps and means for selecting preferably three astronomical objects using a histogram method and determining a square of a first radius (R12) of a track of a first astronomical object; determining a square of a second radius (R22) of a track of a second astronomical object; determining a square of a third radius (R32) of a track of a third astronomical object; determining the inertial attitude of the spin axis using the squares of the first, second, and third radii (R12, R22, and R32) to calculate pitch, yaw, and roll rate; determining a change in the pitch and yaw of the artificial satellite; and controlling on-board generated current flow to various orthogonally-disposed current-carrying loops to act against the Earth's magnetic field and to apply gyroscopic precession to the spinning satellite to correct and maintain its optimum inertial attitude.
Owner:JOHNSON KARA WHITNEY +1

Method and a system for putting a space vehicle into orbit, using thrusters of high specific impulse

The method serves to place a space vehicle, such as a satellite, on a target orbit such as the orbit adapted to normal operation of the space vehicle and starting from an elliptical initial orbit that is significantly different from, and in particular more eccentric than the target orbit. The space vehicle is caused to describe a spiral trajectory made up of a plurality of intermediate orbits while a set of high specific impulse thrusters mounted on the space vehicle are fired continuously and without interruption, thereby causing the spiral trajectory to vary so that on each successive revolution, at least during a first stage of the maneuver, perigee altitude increases, apogee altitude varies in a desired direction, and any difference in inclination between the intermediate orbit and the target orbit is decreased, after which, at least during a second stage of the maneuver, changes in perigee altitude and in apogee altitude are controlled individually in predetermined constant directions, while any difference in inclination between the intermediate orbit and the target orbit continues to be reduced until the apogee altitude, the perigee altitude, and the orbital inclination of an intermediate orbit of the space vehicle have substantially the values of the target orbit.
Owner:SN DETUDE & DE CONSTR DE MOTEURS DAVIATION S N E C M A

System and method for controlling the attitude of a space craft

A system (30) for adjusting the orientation of a spacecraft adapted for use with a satellite (10). The system (30) includes a first control circuit (32, 38, 40) for canceling any momentum of the spacecraft via a counter-rotating spacecraft bus (16, 18). A second controller (32, 42, 44, 46, 48) orients the spacecraft via the application of internal spacecraft forces. In a specific embodiment, the spacecraft bus (16, 18) serves a dual use as storage section and includes a mass (16) having a moment of inertia on the same order as the moment of inertia of the satellite (10). The satellite (10) includes a bus section (16) and a payload section (14). The mass (16) includes the bus section (16). The first control circuit (32, 38, 40) runs software to selectively spin the mass (16) to cancel the momentum of the satellite (10). The software computes an actuator control signal, via a computer (32), that drives a first actuator (38) that spins the mass (16). The first control circuit (32, 38, 40) further includes a circuit for determining the inertial angular rate of the satellite (10) that includes a gyroscope sensor package (34) in communication with the computer (32). The gyroscope sensor package (34) provides a rate signal to the computer (32) that is representative of the momentum of the satellite (10). The computer (32) runs software for generating the actuator control signal in response to the receipt of the rate signal from the gyroscope sensor package (34). The second controller (32, 42, 44, 46, 48) includes a first reaction wheel (20) having an axis of rotation (26) approximately perpendicular to an axis of rotation (28) of a second reaction wheel (22). The first and second reaction wheels (20, 22) are rigidly mounted to the spacecraft bus (18, 16) and are free to spin about their respective axis. The first and second reaction wheels (20, 22) are selectively spun via first and second actuators (44, 48), respectively, in response to the receipt of first and second steering control signals, respectively.
Owner:RAYTHEON CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products