Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

43 results about "Channelrhodopsin" patented technology

Channelrhodopsins are a subfamily of retinylidene proteins (rhodopsins) that function as light-gated ion channels. They serve as sensory photoreceptors in unicellular green algae, controlling phototaxis: movement in response to light. Expressed in cells of other organisms, they enable light to control electrical excitability, intracellular acidity, calcium influx, and other cellular processes. Channelrhodopsin-1 (ChR1) and Channelrhodopsin-2 (ChR2) from the model organism Chlamydomonas reinhardtii are the first discovered channelrhodopsins. Variants have been cloned from other algal species, and more are expected.

G protein-coupled receptor structural model and a method of designing ligand binding to g protein-coupled receptor by using the structural model

The present invention provides a method for constructing a structural model of a complex that a G protein-coupled protein receptor forms with a ligand capable of binding the G protein-coupled receptor and a three-dimensional structural model of an activated intermediate in the structural model of the complex. The present invention also provides a method for identifying, screening for, searching for, evaluating, or designing a ligand capable of binding a GPCR by using the three-dimensional model. In one specific method by the present invention, a three-dimensional structural model of a photoactivated intermediate of rhodopsin is constructed by using a molecule modeling software and by using the three-dimensional structural coordinate of the crystal structure of rhodopsin in such a manner that amino acid residues highly conserved among GPCRs are taken into consideration. The three-dimensional stractural model of the photoactivated intermediate of rhodopsin is subsequently used to construct structural models of activated intermediates of other GPCRs. The present invention further provides a method for identifying, screening for, searching for, evaluating, or designing a ligand that binds a GPCR to act as an agonist or an antagonist. This method employs the three-dimensional structural model constructed by the above-described method.
Owner:SUNTORY HLDG LTD

Channelrhodopsin-2 (ChR2)-green fluorescence protein (GFP) gene engineered nerve stem cell line and construction method thereof

The invention discloses a channelrhodopsin-2 (ChR2)-green fluorescence protein (GFP) gene engineered nerve stem cell line and a construction method of the channelrhodopsin-2-green fluorescence protein (GFP) gene engineered nerve stem cell line. The cell line is the recombined nerve stem cell line C 17.2 of a channelrhodopsin-2 (ChR2) which is capable of stably expressing and a green fluorescence protein (GFP). The recombined ChR2-GFP gene engineered nerve stem cell line C 17.2 is obtained by constructing recombined slow virus, transducing C 17.2 nerve stem cell line and sifting. The channelrhodopsin-2 (ChR2)-green fluorescence protein (GFP) gene engineered nerve stem cell line can be used for in vivo and in vitro studies on the functional integration of a nerve neuron of a transplanted stem cell differentiation source and a nervous system of a host and provides a favorable platform for the study on the functional integration of a nerve neuron of a transplanted stem cell differentiation and a nervous system of a host. Especially with the utilization of a filter paper digestion method, the stem cell recombining method improves the rate of GFP positive cells, is beneficial to streaming Fluorescence Activated Cell Sorting (FACS) separation, and greatly improves the efficiency of an experiment.
Owner:THE FIRST AFFILIATED HOSPITAL OF THIRD MILITARY MEDICAL UNIVERSITY OF PLA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products