Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

171 results about "Photoreceptor cell" patented technology

A photoreceptor cell is a specialized type of neuroepithelial cell found in the retina that is capable of visual phototransduction. The great biological importance of photoreceptors is that they convert light (visible electromagnetic radiation) into signals that can stimulate biological processes. To be more specific, photoreceptor proteins in the cell absorb photons, triggering a change in the cell's membrane potential.

Human visual perception simulation-based self-adaptive low-illumination image enhancement method

The invention provides a human visual perception simulation-based self-adaptive low-illumination image enhancement method. The method is put forwards based on characteristics of low brightness and low contrast of a low-illumination color image and through researching an automatic adjustment process of pupils and photoreceptor cells for an environment. The method includes the following steps that: the adjustment process of the pupils for light is simulated, and the total brightness level of the image is improved; and the self-adaptive adjustment and control ability of eye vision for a low-illumination environment is simulated, and a nonlinear mapping model is designed to simulate the adjustment process of rod cells and cone cells, so that a bright and dark self-adaptation function can be obtained, and a bright and dark information fusing function is determined according to illumination distribution, and global self-adaptive adjustment is performed on brightness components; and the local contrast of the enhanced brightness image will be decreased, so that local self-adaptive contrast enforcement is performed on the image through adopting an exponential function; and finally, and color restoration is performed on the enhanced image. With the human visual perception simulation-based self-adaptive low-illumination image enhancement method of the invention adopted, the brightness, local contrast and detail information of the low-illumination color image can be effectively improved, and especially, the method has obvious effects in dark area and highlight area enhancement.
Owner:SOUTHWEAT UNIV OF SCI & TECH

Co-culture method of photosensory precursor cells and retinal tissue in vitro

The invention relates to a co-culture method of photosensory precursor cells and retinal tissue in vitro and aims to build a co-culture system for the photosensory precursor cells and denaturation retinal tissue of retina photoreceptor cells. The method comprises the following steps: a photosensory precursor cell layer of an embryonic eye source is prepared; a nerve cell layer of a denatured retina is prepared; the nerve cell layer of the denatured retina is placed on the photosensory precursor cell layer; an epithelial layer of retinochrome is prepared in the lower chamber of a plug-in type tissue culture dish; the co-culture system of the retinal tissue and cells is built in vitro, and the retinal tissue and cells are cultured in an incubator with 5% CO2 at the temperature of 37 DEG C. By adopting the method provided by the invention, the biological characteristics and cellular structure of host cells and transplanted cells, the synaptic contact of the transplanted cells and the host cells, and the chromatin conformation reconstruction of the transplanted cells and the host cells can be observed and detected directly in vitro, and the traces of survival, proliferation, differentiation and functional reconstruction of photosensory precursor cells of a transplanted embryonic eye source can be tracked.
Owner:GENERAL HOSPITAL OF PLA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products