Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

54 results about "Retinal implant" patented technology

Retinal prostheses for restoration of sight to patients blinded by retinal degeneration are being developed by a number of private companies and research institutions worldwide. The system is meant to partially restore useful vision to people who have lost their photoreceptors due to retinal diseases such as retinitis pigmentosa (RP) or age-related macular degeneration (AMD). Three types of retinal implants are currently in clinical trials: epiretinal (on the retina), subretinal (behind the retina), and suprachoroidal (between the choroid and the sclera). Retinal implants introduce visual information into the retina by electrically stimulating the surviving retinal neurons. So far, elicited percepts had rather low resolution, and may be suitable for light perception and recognition of simple objects.

Method and apparatus for sensory substitution, vision prosthesis, or low-vision enhancement utilizing thermal sensing

A sensory substitution device according to an embodiment of the invention includes a thermal imaging array for sensing thermal characteristics of an external scene. The device includes a visual prosthesis adapted to receive input based on the scene sensed by the thermal imaging array and to convey information based on the scene to a user of the sensing device. The visual prosthesis is adapted to simultaneously convey to the user different visual information corresponding to portions of the scene having different thermal characteristics. One type of thermal imaging array includes a microbolometer imaging array, and one type of visual prosthesis includes a retinal implant. According to additional embodiments, an apparatus for obtaining thermal data includes a thermal detector adapted to sense thermal characteristics of an environment using a plurality of pixels. The apparatus also includes a pixel translator, operably coupled with the thermal detector, adapted to translate pixel data of the thermal detector to a lower resolution. The apparatus also includes an interface, operably coupled with the pixel translator, adapted to communicate the thermal characteristics of the environment to a user of the apparatus at a lower resolution than sensed by the thermal detector.
Owner:ADVANCED MEDICAL ELECTRONICS

Microelectronic stimulator array for stimulating nerve tissue

The retinal prosthesis test device is comprised of a thin wafer of glass made from nanochannel glass (NGC) with very small channels perpendicular to the plane of the wafer filled with an electrical conductor forming microwires. One surface of the glass is ground to a spherical shape consistent with the radius of curvature of the inside of the retina. The NGC is hybridized to a silicon de-multiplexer and a video image is serially input to a narrow, flexible micro-cable and read into a 2-D array of unit cells in a pixel-by-pixel manner which samples the analog video input and stores the value as a charge on a MOS capacitor. After all unit cells have been loaded with the pixel values for the current frame, a biphasic pulse is sent to each unit cell which modulates the pulse in proportion to the pixel value stored therein. Because the biphasic pulses flow in parallel to each unit cell from a global external connection, the adjacent retinal neurons are all stimulated simultaneously, analogous to image photons stimulating photoreceptors in a normal retina. A permanent retinal implant device uses a NGC array hybridized to a silicon chip, the image is simultaneously generated within each cell through a photon-to-electron conversion using a silicon photodiode. The photons propagate directly through into the backside of the device. Electrical power and any control signals are transmitted through an inductively driven coil or antenna on the chip. The device collects the charge in storage capacitors via the photon-to-electron conversion process, stimulates the neural tissue with biphasic pulses in proportion to the stored charges, and resets the storage capacitors to repeat the process.
Owner:THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY

Multi-phasic microphotodetector retinal implant with variable voltage and current capability and apparatus for insertion

A visible and infrared light powered retinal implant is disclosed that is implanted into the subretinal space for electrically inducing formed vision in the eye. The retinal implant includes a stacked microphotodetector arrangement having an image sensing pixel layer and a voltage and current gain adjustment layer for providing variable voltage and current gain to the implant so as to obtain better low light implant performance than the prior art, and to compensate for high retinal stimulation thresholds present in some retinal diseases. A first light filter is positioned on one of the microphotodetectors in each of the image sensing pixels of the implant, and a second light filter is positioned on the other of the microphotodetectors in the image sensing pixel of the implant, each of the microphotodetectors of the pixel to respond to a different wavelength of light to produce a sensation of darkness utilizing the first wavelength, and a sensation of light using the second wavelength, and a third light filter is positioned on a portion of the voltage and current gain adjustment layer that is exposed to light, to allow adjustment of the implant voltage and current gain of the device by use of a third wavelength of light.
Owner:OPTOBIONICS

Retinal prosthesis, implant device and flexible cable

The invention discloses a flexible cable of a retinal prosthesis, which comprises a microelectrode, a plurality of stimulation electrodes, an abutting piece, a leading-in part and a connecting part, wherein the microelectrode is provided with a first mounting hole and an electrode region;the stimulation electrodes are arranged in the electrode region, and the end parts of the stimulation electrodes are exposed on one side surface of the microelectrode; the abutting piece is provided with a second mounting hole corresponding to the first mounting hole and extends to the back surfaces of the stimulation electrodes from the second mounting hole; the abutting piece is arranged on the other side surface of the microelectrode; force distribution obtained at the second mounting hole is transmitted to the back surfaces of the stimulation electrodes through elastic force generated by elastic denaturation, so that the electrodes are uniformly stressed, a better sticking effect is achieved, and the phenomena of inclination and warping of the electrodes caused by uneven stress are avoided.According to the flexible cable, the microelectrode can be uniformly stressed and can be better attached to the retina so as to obtain a more effective stimulation effect.The invention further discloses a retinal implant device and the retinal prosthesis.
Owner:INTELLIMICRO MEDICAL CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products