Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2623results about How to "Improve long-term stability" patented technology

Detector for optically detecting at least one object

A detector (110) for determining a position of at least one object (112) is proposed. The detector (110) comprises:at least one transversal optical sensor (130), the transversal optical sensor (130) being adapted to determine a transversal position of at least one light beam (138) traveling from the object (112) to the detector (110), the transversal position being a position in at least one dimension perpendicular to an optical axis (116) of the detector (110), the transversal optical sensor (130) being adapted to generate at least one transversal sensor signal;at least one longitudinal optical sensor (132), wherein the longitudinal optical sensor (132) has at least one sensor region (136), wherein the longitudinal optical sensor (132) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (136) by the light beam (138), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (138) in the sensor region (136);at least one evaluation device (142), wherein the evaluation device (142) is designed to generate at least one item of information on a transversal position of the object (112) by evaluating the transversal sensor signal and to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal.
Owner:BASF AG

Detector comprising a transversal optical sensor for detecting a transversal position of a light beam from an object and a longitudinal optical sensor sensing a beam cross-section of the light beam in a sensor region

A detector (110) for determining a position of at least one object (112) is proposed. The detector (110) comprises:at least one transversal optical sensor (130), the transversal optical sensor (130) being adapted to determine a transversal position of at least one light beam (138) traveling from the object (112) to the detector (110), the transversal position being a position in at least one dimension perpendicular to an optical axis (116) of the detector (110), the transversal optical sensor (130) being adapted to generate at least one transversal sensor signal;at least one longitudinal optical sensor (132), wherein the longitudinal optical sensor (132) has at least one sensor region (136), wherein the longitudinal optical sensor (132) is designed to generate at least one longitudinal sensor signal in a manner dependent on an illumination of the sensor region (136) by the light beam (138), wherein the longitudinal sensor signal, given the same total power of the illumination, is dependent on a beam cross-section of the light beam (138) in the sensor region (136);at least one evaluation device (142), wherein the evaluation device (142) is designed to generate at least one item of information on a transversal position of the object (112) by evaluating the transversal sensor signal and to generate at least one item of information on a longitudinal position of the object (112) by evaluating the longitudinal sensor signal.
Owner:BASF SE

Preparation method for super-hydrophobic surface with bionic micro-nano composite structure

InactiveCN105413994AExcellent surface superhydrophobicityLow costPretreated surfacesSpecial surfacesMicro nanoElectrochemical response
The invention belongs to the technical field of preparation of super-hydrophobic surfaces, and relates to a preparation method for a super-hydrophobic surface with a bionic micro-nano composite structure. From the angle of the super-hydrophobic surface, the super-hydrophobic surface is prepared by virtue of a mesoscale two-step etching method; etching treatment is carried out on a substrate surface twice; a micro-nano composite structure similar to a lotus leaf surface is constructed by utilizing a chemical or an electrochemical reaction etching substrate, and surface modification is carried out by virtue of a surface modifier to reduce surface free energy. The size of the micro-nano structure can be controlled by virtue of reaction time, a reaction temperature and concentration. A contact angle, on the surface of the micro-nano composite structure, of water drops is as high as 170 degrees while a rolling angle of the water drops is smaller than 5 degrees. According to electrochemical test results, corrosion resistance of a super-hydrophobic stainless steel sheet is 22 times that of common stainless steel. The method provided by the invention does not need special equipment, is low in cost, good in stability, excellent in super-hydrophobic property, good in corrosion resistance and can be applied to metal corrosion-resistant protection.
Owner:DALIAN UNIV OF TECH

Method for preparing formic acid through electrochemical catalytic reduction of carbon dioxide

The invention relates to a method for preparing formic acid through electrochemical catalytic reduction of carbon dioxide, and belongs to the technical field of carbon dioxide recycling. In the method, a proton exchange membrane separates an electrolytic tank into a cathode chamber and an anode chamber, organic solvent / ionic liquid / water mixed solution in which a large amount of carbon dioxide is dissolved is injected into the cathode chamber, and aqueous solution containing supporting electrolyte is injected into the anode chamber; and after an electrolysis power supply is connected, the carbon dioxide undergoes electroreduction reaction on the cathode to form the formic acid. By the method, the organic solvent / ionic liquid / water mixed solution with the advantages of good conductivity, low viscosity, high capacity of dissolving the carbon dioxide, wide electrochemical window, and low use cost can be obtained, and when the carbon dioxide is electrically reduced in the mixed solution, the current density in the electroreduction reaction of the carbon dioxide can be improved and the electrocatalytic activity and long-time stability of a cathode material are improved.
Owner:KUNMING UNIV OF SCI & TECH

PTC graphene heating printing ink, preparation method thereof and heating film prepared from PTC graphene heating printing ink

InactiveCN107446408AImprove securityAchieving self-limiting temperature characteristicsInksHeating element materialsSilver pasteAdhesive
The invention discloses PTC graphene heating printing ink and a preparation method thereof. The PTC graphene heating printing ink is prepared from the following components in percentages by mass: 50% to 70% of a binder, 9% to 21% of a solvent, 1% to 3% of an additive, 10% to 20% of a conductive filler and 5% to 20% of a PTC functional material. The preparation method comprises the following steps: (1) firstly stirring and dispersing the binder, the solvent and the additive for 20 to 30 min, then adding the PTC functional material into stirring equipment for stirring for 8 to 12 min, and finally adding the conductive filler for uniform stirring to obtain a coarse paste; and (2) carrying out four to six times of three-roller grinding on the coarse paste so as to obtain the PTC graphene heating printing ink. The invention also discloses a heating film. The heating film comprises an organic polymer base material film, the PTC graphene heating printing ink, a conductive silver paste, conductive copper foil and an organic polymer adhesive film. The PTC function of the graphene heating film is increased, the potential safety hazard problem of an existing graphene heating film is eliminated, and the practicability is improved.
Owner:DEYANG CARBONENE TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products