Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4739 results about "Servo control" patented technology

Servo control is achieved by sending a servo a PWM (pulse-width modulation) signal, a series of repeating pulses of variable width where either the width of the pulse (most common modern hobby servos) or the duty cycle of a pulse train (less common today) determines the position to be achieved by the servo. The PWM signal might come from a radio control receiver to the servo or from common microcontrollers such as the Arduino.

Actively controlled rotary steerable system and method for drilling wells

An actively controlled rotary steerable drilling system for directional drilling of wells having a tool collar rotated by a drill string during well drilling. A bit shaft has an upper portion within the tool collar and a lower end extending from the collar and supporting a drill bit. The bit shaft is omni-directionally pivotally supported intermediate its upper and lower ends by a universal joint within the collar and is rotatably driven by the collar. To achieve controlled steering of the rotating drill bit, orientation of the bit shaft relative to the tool collar is sensed and the bit shaft is maintained geostationary and selectively axially inclined relative to the tool collar during drill string rotation by rotating it about the universal joint by an offsetting mandrel that is rotated counter to collar rotation and at the same frequency of rotation. An electric motor provides rotation to the offsetting mandrel with respect to the tool collar and is servo-controlled by signal input from position sensing elements such as magnetometers, gyroscopic sensors, and accelerometers which provide real time position signals to the motor control. In addition, when necessary, a brake is used to maintain the offsetting mandrel and the bit shaft axis geostationary. Alternatively, a turbine is connected to the offsetting mandrel to provide rotation to the offsetting mandrel with respect to the tool collar and a brake is used to servo-control the turbine by signal input from position sensors.
Owner:SCHLUMBERGER TECH CORP

Dynamic target tracking and positioning method of unmanned plane based on vision

The invention discloses a dynamic target tracking and positioning method of an unmanned plane based on vision, and belongs to the navigation field of the unmanned planes. The dynamic target tracking and positioning method comprises the following steps of: carrying out video processing, dynamic target detecting and image tracking; carrying out cloud deck servo control; establishing a corresponding relationship between a target in the image and a target in the real environment, and further measuring the distance between a camera and a dynamic target to complete precise positioning of the dynamic target; and enabling an unmanned plane control system to fly by automatically tracking the dynamic target on the ground. The dynamic target tracking and positioning method of the unmanned plane based on the vision can automatically realize the movement target detecting, image tracking and optical axis automatic deflecting without the full participation of the people, so that the dynamic target is always displayed at the center of an image-forming plane; and the distance between the unmanned plane and the dynamic target is measured in real time according to an established model on the basis of obtaining the height information of the unmanned plane. Therefore, the positioning of the dynamic target is realized; closed-loop control is formed by using the positioned dynamic target as a feedback signal, so that the tracking flight of the unmanned plane is guided.
Owner:BEIHANG UNIV

Data storage system having an optical processing flying head

An optical data storage and retrieval system uses a flying head. The flying head is supported on a moving media having information stored in a plurality of stored data locations thereon. Information is stored in each of the plurality of media locations as physical structures capable of modulating the polarization state of incident light into one of two output polarization states. The flying head includes an optical processing assembly which directs an incident light beam having a source polarization state onto the moving media, accessing successive data locations. A reflected light beam having the source polarization state of the incident light beam modulated by a respective polarization modifying data location into one of the output polarization states is received by the flying head. The optical processing assembly optically transforms the modulated output polarization state of the reflected light beam into two return light beams having differentially modulated intensity related to the output polarization state of the reflected light beam. The two intensity modulated return light beams are optically coupled to a distal differential detector which outputs digital data representing the stored data information for the subject data location. A preferred embodiment includes optical fibers for coupling the incident and return light beams between the detector and the flying head. The optical assembly of a preferred embodiment includes an optical plate having pre-shaped and dimensioned recesses for automatically locating and aligning multiple optical components comprising the assembly. The flying head may also include a servo-controlled micro machined mirror for directing the incident and reflected light beams to and from the media.
Owner:WESTERN DIGITAL (FREMONT LLC)

Special photoelectric nacelle of power patrol unmanned helicopter

The invention discloses a special photoelectric nacelle of a power patrol unmanned helicopter, which comprises an airborne part and a ground part, wherein the airborne part comprises a fixed part which is positioned in the upper part, a rotatable part which is positioned in the lower part and a servo control assembly; the rotatable part comprises a gyroscope stable rotating tower; the fixed part comprises an electronic control cabin; cables between the electronic control cabin and the gyroscope stable rotating tower are connected by a conducting slide ring which can support the gyroscope stable rotating tower to rotate by nx360 degrees; and the airborne part of the photoelectric nacelle is suspended on the helicopter by a vibration reducing device and communicated with a flight control system of the helicopter. The special photoelectric nacelle is a photoelectric task load with compact structure and high performance, can meet the requirement for remote power patrol, has self-stabilizing function and self-tracing function, can shoot a target to be traced from an image in real time, transmit the target to a ground control vehicle by a radio transmission system on an aerial carrier and is convenient for a patrol parson to directly master the scene condition to improve the efficiency of power patrol.
Owner:STATE GRID CORP OF CHINA +3

Variable-impedance lower limb rehabilitation robot control method based on brain muscle information

The invention discloses a variable-impedance lower limb rehabilitation robot control method based on brain muscle information. The method includes: collecting electroencephalogram and surface electromyogram signals of a patient in real time through an electroencephalogram and surface electromyogram signal collector, and monitoring and evaluating rehabilitation degree of the patient; adopting different rehabilitation training strategies; when the rehabilitation degree is low, implementing passive training control, adopting a PD position servo control method, and controlling a lower limb rehabilitation device to enable the patient to move with a correct physiological gait track; when the rehabilitation degree is high, adopting an active control mode, and predicting a movement intention of the patient by extracting feature vectors of electroencephalogram signals and surface electromyogram signals of the patient in real time; using a fuzzy neutral network algorithm to integrate the electroencephalogram signals and the surface electromyogram signals to generate a movement gait track curve expected by the patient in real time; utilizing a variable-impedance control method to realize active, realtime and synergistic control of a lower limb rehabilitation robot man-machine system.
Owner:XI AN JIAOTONG UNIV

System and method for servo control of nonlinear electromagnetic actuators

Servo control using ferromagnetic core material and electrical windings is based on monitoring of winding currents and voltages and inference of magnetic flux, a force indication; and magnetic gap, a position indication. Third order nonlinear servo control is split into nested control loops: a fast nonlinear first-order inner loop causing flux to track a target by varying a voltage output; and a slower almost linear second-order outer loop causing magnetic gap to track a target by controlling the flux target of the inner loop. The inner loop uses efficient switching regulation, preferably based on controlled feedback instabilities, to control voltage output. The outer loop achieves damping and accurate convergence using proportional, time-integral, and time-derivative gain terms. The time-integral feedback may be based on measured and target solenoid drive currents, adjusting the magnetic gap for force balance at the target current. Incorporation of permanent magnet material permits the target current to be zero, achieving levitation with low power, including for a monorail deriving propulsion from the levitation magnets. Linear magnetic approximations lead to the simplest controller, but nonlinear analog computation in the log domain yields a better controller with relatively few parts. When servo-controlled solenoids provide actuation of a pump piston and valves, electronic LC resonance measurements determine liquid volume and gas bubble volume.
Owner:SEALE JOSEPH B +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products