Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1760results about "Component unification devices" patented technology

CMC Vane Assembly Apparatus and Method

A metal vane core or strut (64) is formed integrally with an outer backing plate (40). An inner backing plate (38) is formed separately. A spring (74) with holes (75) is installed in a peripheral spring chamber (76) on the strut. Inner and outer CMC shroud covers (46, 48) are formed, cured, then attached to facing surfaces of the inner and outer backing plates (38, 40). A CMC vane airfoil (22) is formed, cured, and slid over the strut (64). The spring (74) urges continuous contact between the strut (64) and airfoil (66), eliminating vibrations while allowing differential expansion. The inner end (88) of the strut is fastened to the inner backing plate (38). A cooling channel (68) in the strut is connected by holes (69) along the leading edge of the strut to peripheral cooling paths (70, 71) around the strut. Coolant flows through and around the strut, including through the spring holes.
Owner:SIEMENS ENERGY INC

Airfoils for wake desensitization and method for fabricating same

ActiveUS20130164488A1Reducing desensitizationEngine manufacturePump componentsLeading edgeTrailing edge
An airfoil and method of fabricating an airfoil including a first and a second side coupled together at a leading and a trailing edge and extending there between. The airfoil includes a plurality of first chord sections having a first chord length and extending outward from one of the first side or second side of the airfoil at the leading edge and a plurality of second chord sections having a second chord length and extending outward from the one of the first side or the second side of the airfoil at the leading edge. The leading edge including spaced-apart wave-shaped projections defining a waveform. The configuration defining a three-dimensional crenulated airfoil configured to facilitate desensitization of an airfoil unsteady pressure response to at least one impinging upstream generated wake or vortex by decorrelating spatially and temporally and reducing in amplitude an unsteady pressure caused by interaction of the airfoil with the upstream generated wake or vortex.
Owner:GENERAL ELECTRIC CO

Power take-off system and gas turbine engine assembly including same

A power take-off system for a gas turbine engine includes a starter coupled to a first spool using a first shaft, and a generator coupled to the second spool using a second shaft, the first shaft is circumferentially offset by the second shaft by an angle α. A method of assembling a gas turbine engine assembly that includes the power take-off system, and a gas turbine engine assembly including the power take-off system are also described.
Owner:GENERAL ELECTRIC CO

Method for improvement of the efficiency of a wind turbine rotor

InactiveUS7059833B2Improvement of wind turbine rotor efficiencyImprove efficiencyPropellersWind motor controlTurbine bladeTrailing edge
A method for the improvement of wind turbine rotor efficiency blades of a wind turbine rotor with serrated trailing edges each having a plurality of span-wise, periodic indentations, in the form of saw teeth having approximately 60 degrees included angles between adjacent vertices. The efficiency of an existing wind turbine rotor is improved by the attachment of an apparatus to at least part of the trailing edge of the wind turbine blades, the apparatus being in the form of a serrated panel that is fixed to the surface of the blade and has the serrations extending into the airflow behind the trailing edge of the existing blade. The efficiency of a new wind turbine blade is improved by manufacturing the blade with serrations of at least part of the trailing edge of the wind turbine blade.
Owner:BONUS ENERGY +1

Rotor blade trailing edge assembly and method of use

A method of assembling a rotor blade for a turbine is provided that includes forming a rotor blade trailing edge by coupling a suction side terminus to a pressure side terminus and positioning a trailing edge assembly between the suction side terminus and the pressure side terminus, the trailing edge assembly having a varying cross-section.
Owner:GENERAL ELECTRIC CO

System and method of using a compressed air storage system with a gas turbine

A power generation system includes a first compressor, a second compressor, a combustor configured to receive compressed air from the second compressor to produce an exhaust stream, a first turbine, and a power turbine. The first turbine is configured to receive the exhaust stream, generate a rotational power from the exhaust stream, output the rotational power to a second compressor, and output the exhaust stream. The system includes a coupling device configured to couple and decouple the first compressor to / from a second turbine, an electrical generator coupled to an output of the power turbine and configured to output electrical power, and a controller configured to cause the coupling device to mechanically decouple the second turbine from the first compressor, and cause the coupling device to direct compressed air from an air storage cavern to an inlet of the second compressor.
Owner:NUOVO PIGNONE TECH SRL

METHODS AND SYSTEMS TO FACILITATE REDUCING NOx EMISSIONS IN COMBUSTION SYSTEMS

A method for assembling a gas turbine combustor system is provided. The method includes providing a combustion liner including a center axis, an outer wall, a first end, and a second end. The outer wall is orientated substantially parallel to the center axis. The method also includes coupling a transition piece to the liner second end. The transition piece includes an outer wall. The method further includes coupling a plurality of lean-direct injectors along at least one of the liner outer wall and the transition piece outer wall such that the injectors are spaced axially apart along the wall.
Owner:GENERAL ELECTRIC CO

Method for forming a channel on the surface of a metal substrate

A method for forming a channel within a coated, metal-based substrate is described. In one technique, a channel-forming material is first deposited on the substrate, followed by the deposition of a bonding agent, such as a braze. One or more coatings can then be applied over the substrate. In one embodiment, the channel is formed when the channel-forming material is subsequently removed. In another embodiment, the channel is formed due to the lack of adhesion between particular channel-forming materials and the overlying bonding agent. Related articles are also described, e.g., gas turbine components which include protective coatings and a pattern of cooling channels.
Owner:GENERAL ELECTRIC CO

Fuel nozzle

A fuel nozzle for a gas turbine engine is disclosed, the fuel nozzle comprising at least one unitary component made using a rapid manufacturing process. In one aspect, the rapid manufacturing process is a laser sintering process. Unitary components disclosed include a conduit, swirler, distributor, venturi and a centerbody.
Owner:GENERAL ELECTRIC CO

Tool for friction stir welding

A friction stir welding tool for welding high-strength materials with one or more of the following features: 1) a curved transition geometry structure at the shoulder face and probe interface; 2) a tool material selected on the basis of an ultimate tensile strength determined at or above the temperature of the tool processing temperature; 3) a compressive stress at the point of crack fatigue introduced by mechanical or chemical means; and 4) a threaded probe with a) a major to minor thread diameter ratio that increases toward the distal end of the probe and / or b) with a curved thread root.
Owner:EDISON WELDING INSTITUTE INC

CMC to metal attachment mechanism

A CMC wall (20F) may be attached to a metal wall (22F) by a plurality of bolts (28A, 28B, 28C) passing through respective holes (24A, 24B, 24C) in the CMC wall (20F) and holes in the metal wall (22F), clamping the walls (20F, 22F) together with a force that allows sliding thermal expansion but does not allow vibrational shifting. Distal ones of the holes (24A, 24B) in the CMC wall (20F) or in the metal wall (22F) are elongated toward a central one of the bolts (24C) or at alternate angles to guide differential thermal expansion (20T) of the CMC wall (20F) versus the metal wall (22F) between desired cold and hot geometries. A second CMC wall (20R) may be mounted similarly to a second metal wall (22R) by pins (39A, 39B, 39C) that allow expansion of the CMC component (201) in a direction normal to the walls (20F, 20R).
Owner:SIEMENS ENERGY INC

Methods for fabricating components

A method for fabricating an assembly having an airfoil extending radially outwardly from a member includes determining three-dimensional information of the airfoil, converting the three-dimensional information into a plurality of slices that each define a cross-sectional layer of the airfoil, successively forming each layer of the airfoil by fusing a metallic powder using laser energy, and coupling the airfoil to the member such that the airfoil extends radially outward from the member.
Owner:GENERAL ELECTRIC CO

Method for designing a multiblade radial fan and a multiblade radial fan

PCT No. PCT / JP96 / 02391 Sec. 371 Date Apr. 18, 1997 Sec. 102(e) Date Apr. 18, 1997 PCT Filed Aug. 27, 1996 PCT Pub. No. WO97 / 08463 PCT Pub. Date Mar. 6, 1997Specifications of the impeller and the scroll type casing of a multiblade radial fan comprising an impeller having numerous radially directed blades circumferentially spaced from each other and a scroll type casing accommodating the impeller are determined so as to make divergence angle of the scroll type casing substantially coincide with divergence angle of the free vortex formed by the air discharged from the impeller.
Owner:NIPPON DENSAN CORP

Fabricated itd-strut and vane ring for gas turbine engine

A gas turbine engine mid turbine frame having an annular interturbine duct and vane ring assembly includes a duct having outer and inner duct walls of sheet metal interconnected by radial hollow struts of sheet metal and a vane ring is connected to the duct to provide the assembly. The interturbine duct and vane ring assembly may be provided within a mid turbine frame in a manner which is independent of a bearing load path through the mid turbine frame.
Owner:PRATT & WHITNEY CANADA CORP

High rate pulsing wing assembly line

A single piece pulsed flow wing assembly method providing for horizontal wing manufacture is accomplished using synchronized automated vehicles guided in a predetermined manner to move and, locate wing structure in a plurality of assembly positions. Multi-axis assembly positioning systems (MAPS) are used at each assembly position to support and index components in the wing structure and determinant assembly techniques are used for indexing of the components. Modular automated manufacturing processes employing magnetic assembly clamping, drilling, fastener insertion, and sealant application are employed.
Owner:THE BOEING CO

Method for linear friction welding and product made by such method

A process for joining a base for an airfoil to a disk for an integrally bladed rotor stage in a gas turbine engine includes providing a disk having a radially outer rim with a slot defined therein by a recessed surface, and further includes providing a base having a longitudinally extending root portion facing opposite a longitudinally extending support portion for supporting the airfoil. The root portion has a root surface and the support portion has an outer surface. The process further includes bringing the root surface of the root portion into contact with the recessed surface bounding the slot, applying pressure and relative movement between the base and the rim to achieve during welding, substantial contiguity between the root surface and the recessed surface over the area of the recessed surface, resulting in a substantially continuous linear friction weld between the base and the rim.
Owner:UNITED TECH CORP

Turbine seal plate locking system

A seal plate assembly is provided in a rotor disc for a turbine engine. The seal plate assembly includes a radially extending flange on the disc and an annular groove defined between a radial surface on the flange and a face of the disc. An annular outer surface extends axially in facing relationship to an annular inner surface of the groove. A plate structure is supported between the inner and outer surfaces, and a lock structure is provided for holding the plate structure in place. The lock structure includes an axial leg that is adapted to be located between an inner edge of the plate structure and the inner surface of the groove, and the lock structure further includes a radial leg that is adapted to be located between the radial surface on the flange and an outwardly facing surface of the plate structure.
Owner:SIEMENS ENERGY INC

Sealing system between bearing and compressor housing

A turbocharger oil discharge assembly (301, 501, 701, 901) can have a thrust collar (324, 524, 724, 924) with a first radially outwardly extending wall and a second radially outwardly extending wall to define a first annular channel. The first radially outwardly extending wall can have an annular flange that at least in part defines a second annular channel. The assembly can also have a thrust bearing (340, 540, 740, 940) having a radially inner end received in the first annular channel, and an insert (400, 600, 800, 1000). An oil collection chamber (440, 640, 840, 1040) can be defined at least in part by a drainage channel of the insert (400, 600, 800, 1000), the annular flange of the thrust collar (324, 524, 724, 924) and the thrust bearing (340, 540, 740, 940). Pressurized oil discharged from an oil release interface can be directed towards a radially outer region of the oil collection chamber (440, 640, 840, 1040) and can be collected in the oil collection chamber (440, 640, 840, 1040) for subsequent exhaust.
Owner:BORGWARNER INC

Methods and apparatus for assembling gas turbine engines

A method of assembling a gas turbine engine includes coupling an inner engine casing to an outer engine casing such that an annular flow path is defined therebetween, coupling a plurality of circumferentially-spaced support struts between the inner and outer casings, and coupling a plurality of circumferentially-spaced outlet guide vanes within the flow path upstream from the support struts, such that a first circumferential spacing is defined between a first guide vane and a second guide vane, and a second circumferential spacing is defined between the second guide vane and a third guide vane. The guide vanes are arranged such that the second guide vane is between the first and third guide vanes and the second circumferential spacing is different from the first circumferential spacing.
Owner:GENERAL ELECTRIC CO

Structural reinforcement strut for gas turbine case

A gas turbine engine case having a working fluid flow, includes inner and outer case portions defining an annular duct for directing the working fluid flow, and a plurality of struts positioned within the annular duct and extending between the inner and outer case portions. The struts are welded to the inner and outer case portions with a first weld along a peripheral line of the respective struts and with second weld, of fillet type, in selected locations for additionally connecting a portion of each strut to the respective inner and outer case portions.
Owner:PRATT & WHITNEY CANADA CORP

Method of forming a sputtering target assembly and assembly made therefrom

A method of forming a sputtering target assembly and the sputtering target assembly made therefrom are described. The method includes bonding a sputtering target to a backing plate at a low temperature. Also described is a method of forming a sputtering target assembly such that a gap is formed between the sputtering target and the backing plate. Also described is a method of forming a sputtering target assembly providing a mechanism to prevent unintended sputtering into the backing plate.
Owner:GLOBAL ADVANCED METALS USA

Combined acoustic absorber and heat exchanging outlet guide vanes

An outlet guide vane assembly for turbomachines is provided. The outlet guide vane assembly comprises one or more outlet guide vanes, wherein each of the one or more outlet guide vanes comprises a first surface and a second surface, and wherein the one or more outlet guide vanes are disposed between an inner wall and an outer wall of an engine and a surface cooler layer disposed on at least a portion of the first surface, the second surface, or both of the one or more outlet guide vanes, wherein the surface cooler layer comprises a metal foam, a carbon foam, or a combination thereof, wherein the metal foam, the carbon foam or the combination thereof is configured to augment heat transfer and enhance acoustic absorption.
Owner:GENERAL ELECTRIC CO

Methods and apparatus for securing multi-piece nozzle assemblies

A method for securing a nozzle for a turbine is provided. The nozzle includes an airfoil having a suction side and a pressure side connected at a leading edge and a trailing edge such that a cooling cavity is defined within the airfoil, the airfoil extending between an inner band and an outer band. The method includes extending at least one member through the airfoil, and at least one of the inner band and the outer band. The method further includes securing the nozzle assembly in position with at least one fastener such that the at least one member is coupled adjacent to at least one of the inner band and the outer band.
Owner:GENERAL ELECTRIC CO

Oscillating fluid power generator

ActiveUS20070297903A1Reduce purchasing costsIncrease technical and economic viabilityEngine fuctionsWorking fluid for enginesOscillating flowEngineering
A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.
Owner:MORRIS DAVID C
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products