Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

15703results about "Wind motor components" patented technology

Wind turbine

InactiveUS7042109B2Improve efficiencyCost per unit power generationWindingsWind motor controlRotational energyAir core
A wind turbine for generating electrical power from wind energy includes a turbine rotor mounted for rotation in wind, and having multiple blades for converting energy in the wind into rotational energy. A generator is coupled with said turbine rotor such that said turbine rotor drives said generator. The generator has a stationary air core armature that is located in a magnetic airgap between two generator rotor portions. The generator rotor portions have circumferential arrays of multiple alternating polarity permanent magnets attached to ferromagnetic back irons such that the permanent magnets drive magnetic flux back and forth between each rotor portion and through the stationary air core armature. The stationary air core armature has multiple phase windings of multiple individually insulated strand conductor wire that is wound with two separate portions including an active length portion and an end turn portion. The end turn portion is located outside the magnetic airgap and traverses predominately circumferentially, and the active length portion is located in the magnetic airgap and traverses predominately non-circumferentially and perpendicular to the direction of the magnetic airgap. The end turn portion has a thickness that is greater than the thickness of said active length portion in the direction of said magnetic airgap. AC voltage is induced in the multiple phase windings as the turbine rotor rotates.

Axial-mode linear wind-turbine

A wind harnessing system using a plurality of self supporting airfoil kites 50 for production of useful power. The system comprising multiple airfoil kites 50 in tandem attached to a pivotal control housing 32 by control lines 58L and 58R and support lines 60L and 60R. Control lines 58L and 58R can change length with respect to the length of support lines 60L and 60R to control the airfoil kites' 50 angle-of-attack, pitch angle, direction of flight, and flight speed. The length of control lines 58L and 58R are controlled from ground station 30 by a movable pulley system in control housing 32 to adjust the airfoils' direction to follow a specific flight path 140. Control lines 58R and 58L and support lines 60R and 60L are also wound on a power shaft and pulley system in control housing 32. As the airfoil kites are propelled by the wind at very-high speed, the airfoils generate a powerful AXIAL force. The control lines 58L and 58R and support lines 60L and 60R are then reeled-out under this AXIAL tension causing the power shaft and pulley system in control housing 32 to turn a generator to generate electricity. After airfoil kites 50 have finished their reel-out power stroke 140a, the airfoil's pitch angle is made negative so they can be reeled-in by their control and support lines using a minimum of force along path 140b. Once the airfoils have been rewound to the proper distance, the airfoils are again angled for high-speed operation to generate powerful AXIAL force and reeled-out along 140c to provide another power stroke. The airfoil kites are then reeled-in again along path 140d and the entire process repeats starting with power stroke 140a. Since the force to rewind the airfoils is much less than the force generated during reel-out, there is net power generated.

High effectiveness cooled turbine vane or blade

A robust multiple-walled, multi-pass, high cooling effectiveness cooled turbine vane or blade designed for ease of manufacturability, minimizes cooling flows on highly loaded turbine rotors. The vane or blade design allows the turbine inlet temperature to increase over current technology levels while simultaneously reducing turbine cooling to low levels. A multi-wall cooling system is described, which meets the inherent conflict to maximize the flow area of the cooling passages while retaining the required section thickness to meet the structural requirements. Independent cooling circuits for the vane or blade's pressure and suction surfaces allow the cooling of the airfoil surfaces to be tailored to specific heat load distributions (that is, the pressure surface circuit is an independent forward flowing serpentine while the suction surface is an independent rearward flowing serpentine). The cooling air for the independent circuits is supplied through separate passages at the base of the vane or blade. The cooling air follows intricate passages to feed the serpentine thin outer wall passages, which incorporate pin fins, turbulators, etc. These passages, while satisfying the aero/thermal/stress requirements, are of a manufacturing configuration that may be cast with single crystal materials using conventional casting techniques.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products