Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1082 results about "Circulating tumor cell" patented technology

Circulating tumor cells (CTCs) are cells that have shed into the vasculature or lymphatics from a primary tumor and are carried around the body in the blood circulation. Among CTCs, a subpopulation of constitute seeds for the subsequent growth of additional tumors (metastases) in distant organs, a mechanism that is responsible for the vast majority of cancer-related deaths. The detection and analysis of CTCs can assist early patient prognoses and determine appropriate tailored treatments.

Analysis of circulating tumor cells, fragments, and debris

The methods and reagents described in this invention are used to analyze circulating tumor cells, clusters, fragments, and debris. Analysis is performed with a number of platforms, including flow cytometry and the CellSpotter® fluorescent microscopy imaging system. Analyzing damaged cells has shown to be important. However, there are two sources of damage: in vivo and in vitro. Damage in vivo occurs by apoptosis, necrosis, or immune response. Damage in vitro occurs during sample acquisition, handling, transport, processing, or analysis. It is therefore desirable to confine, reduce, eliminate, or at least qualify in vitro damage to prevent it from interfering in analysis. Described herein are methods to diagnose, monitor, and screen disease based on circulating rare cells, including malignancy as determined by CTC, clusters, fragments, and debris. Also provided are kits for assaying biological specimens using these methods.
Owner:MENARINI SILICON BIOSYSTEMS SPA

Microfluidic devices and methods for cell sorting, cell culture and cells based diagnostics and therapeutics

Microfluidic devices and methods that use cells such as cancer cells, stem cells, blood cells for preprocessing, sorting for various biodiagnostics or therapeutical applications are described. Microfluidics electrical sensing such as measurement of field potential or current and phenomena such as immiscible fluidics, inertial fluidics are used as the basis for cell and molecular processing (e.g., characterizing, sorting, isolation, processing, amplification) of different particles, chemical compositions or biospecies (e.g., different cells, cells containing different substances, different particles, different biochemical compositions, proteins, enzymes etc.). Specifically this invention discloses a few sorting schemes for stem cells, whole blood and circulating tumor cells and also extracting serum from whole blood. Further medical diagnostics technology utilizing high throughput single cell PCR is described using immiscible fluidics couple with single or multi cells trapping technology.
Owner:BIOPICO SYST

Circulating Mutant DNA to Assess Tumor Dynamics

DNA containing somatic mutations is highly tumor specific and thus, in theory, can provide optimum markers. However, the number of circulating mutant gene fragments is small compared to the number of normal circulating DNA fragments, making it difficult to detect and quantify them with the sensitivity required for meaningful clinical use. We apply a highly sensitive approach to quantify circulating tumor DNA (ctDNA) in body samples of patients. Measurements of ctDNA can be used to reliably monitor tumor dynamics in subjects with cancer, especially those who are undergoing surgery or chemotherapy. This personalized genetic approach can be generally applied.
Owner:THE JOHN HOPKINS UNIV SCHOOL OF MEDICINE

Multiparameter analysis of comprehensive nucleic acids and morphological features on the same sample

A highly sensitive assay is disclosed which utilizes a method for gene specific primed amplification of mRNA libraries from rare cells and rare transcripts found in blood. The assay allows detection of rare mRNA (10 copies / cell) found in 1 to 10 cells isolated through immunomagnetic enrichment. The assay is an improvement over multiplex PCR and allows efficient detection of rare coding sequences for circulating carcinoma cells in the blood. The methods are useful in profiling of cells isolated from tissues or body fluids and serves as an adjunct to clinical diagnosis of diverse carcinomas including early stage detection and classification of circulating tumor cells. Monitoring of nucleic acid and protein profiles of cells either in conventional or microarray formats, facilitates management of therapeutic intervention including staging, monitoring response to therapy, confirmation of remission and detection of regression.
Owner:VERIDEX LCC

Analysis of circulating tumor cells, fragments, and debris

The methods and reagents described in this invention are used to analyze circulating tumor cells, clusters, fragments, and debris. Analysis is performed with a number of platforms, including flow cytometry and the CellSpotter® fluorescent microscopy imaging system. Analyzing damaged cells has shown to be important. However, there are two sources of damage: in vivo and in vitro. Damage in vivo occurs by apoptosis, necrosis, or immune response. Damage in vitro occurs during sample acquisition, handling, transport, processing, or analysis. It is therefore desirable to confine, reduce, eliminate, or at least qualify in vitro damage to prevent it from interfering in analysis. Described herein are methods to diagnose, monitor, and screen disease based on circulating rare cells, including malignancy as determined by CTC, clusters, fragments, and debris. Also provided are kits for assaying biological specimens using these methods.
Owner:MENARINI SILICON BIOSYSTEMS SPA

Stabilization of cells and biological specimens for analysis

Compositions and methods for stabilizing rare cells in blood specimens, preserving the quality of blood specimens, and also serving as cell fixatives are disclosed which minimize losses of target cells (for example, circulating tumor cells) and formation of debris and aggregates from target cells, non-target cells and plasma components, thereby allowing more accurate analysis and classification of circulating tumor cells (CTC) and, ultimately, of tumor burdens in cancer patients. Stabilization of specimens is particularly desirable in protocols requiring rare cell enrichment from blood specimens drawn from cancer patients. Exposure of such specimens to potentially stressful conditions encountered, for example, in normal processing, mixing, shaking, delays due to transporting the blood, has been observed to not only diminish the number of CTC but also to generate debris and aggregates in the blood specimens that were found to interfere with accurate enumeration of target cells, if present. Stabilizers are necessary to discriminate between in vivo CTC disintegration and in vitro sample degredation.
Owner:VERIDEX LCC

Biochip for High-Throughput Screening of Circulating Tumor Cells

Embodiments in accordance with the present invention relate to the use of effusive filtration to segregate tumor cells from a sample of bodily fluid. In one embodiment, fluid containing a cell is flowed down a channel having a filtration medium present along at least one side wall. The tumor cell is captured when the fluid passes through the filtration medium. Accumulated pressure on the captured tumor cell is reduced by allowing the fluid that has passed through the filtration medium to re-enter the channel. In a particular embodiment, the filtration medium may comprise side wall apertures having a width smaller than that of the cell, with downstream apertures allowing re-entry of the fluid into the channel.
Owner:UNIV OF WASHINGTON

Method for cancer detection, diagnosis and prognosis

The present invention provides a method for diagnosing cancer, predicting a disease outcome or response to therapy in a patient sample. The method involves isolating a circulating tumor cell (CTC), for example, a viable CTC, from a sample using a parylene microfilter device comprising a membrane filter having or consisting of a parylene substrate, which has an array of holes with a predetermined shape and size; and detecting and quantifying telomerase activity in blood circulating tumor cells. The invention further provides methods of using cells live-captured in various applications.
Owner:UNIV OF SOUTHERN CALIFORNIA +1

Methods and compositions for detecting rare cells from a biological sample

The present invention provides methods and compositions for isolating and detecting rare cells from a biological sample containing other types of cells. In particular, the present invention includes a debulking step that uses a microfabricated filters for filtering fluid samples and the enriched rare cells can be used in a downstream process such as identifies, characterizes or even grown in culture or used in other ways. The invention also include a method of determining the aggressiveness of the tumor or of the number or proportion of cancer cells in the enriched sample by detecting the presence or amount of telomerase activity or telomerase nucleic acid or telomerase expression after enrichment of rare cells. This invention further provides an efficient and rapid method to specifically remove red blood cells as well as white blood cells from a biological sample containing at least one of each of red blood cells and white blood cells, resulting in the enrichment of rare target cells including circulating tumor cells (CTC), stromal cells, mesenchymal cells, endothelial cells, fetal cells, stem cells, non-hematopoietic cells etc from a blood sample. The method is based upon combination of immuno-microparticles (antibody coated microparticles) and density-based separation. The final enriched target cells can be subjected to a variety of analysis and manipulations, such as flowcytometry, PCR, immunofluorescence, immunocytochemistry, image analysis, enzymatic assays, gene expression profiling analysis, efficacy tests of therapeutics, culturing of enriched rare cells, and therapeutic use of enriched rare cells. In addition, depleted plasma protein and white blood cells can be optionally recovered, and subjected to other analysis such as inflammation studies, gene expression profiling, etc.
Owner:AVIVA BIOSCI

Membrane filter for capturing circulating tumor cells

ActiveUS20060254972A1Highly efficient in capturingEffective membraneBioreactor/fermenter combinationsBiological substance pretreatmentsParyleneGeometric design
The present invention provides a parylene-based membrane filter device for capturing of circulating tumor cells (CTC). The membrane filter has an array of holes having a predetermined geometric design with precisely controlled size, shape and density. In one aspect, the device has a stack of substantially parallel membrane filters with uniformly-spaced and / or monodispersed holes.
Owner:UNIV OF SOUTHERN CALIFORNIA +1

Method and apparatus for microfiltration to perform cell separation

ActiveUS20090188864A1Laborious and expensiveMembranesDecorative surface effectsParyleneMicrofabrication
A microfiltration apparatus and method for separating cells, such as circulating tumor cells, from a sample using a microfiltration device having a top porous membrane and a bottom porous membrane. The porous membranes are formed from parylene and assembled using microfabrication techniques. The porous membranes are arranged so that the pores in the top membrane are offset from the pores in the bottom membrane.
Owner:UNIV OF SOUTHERN CALIFORNIA +1

Circulating tumor cells (CTC's): early assessment of time to progression, survival and response to therapy in metastatic cancer patients

A cancer test having prognostic utility in predicting time to disease progression, overall survival, and response to therapy in patients with MBC based upon the presence and number of CTC's. The Cell Spotter® System is used to enumerate CTC's in blood. The system immunomagnetically concentrates epithelial cells, fluorescently labels the cells and identifies and quantifies CTC's. The absolute number of CTC's detected in the peripheral blood tumor load is, in part, a factor in prediction of survival, time to progression, and response to therapy. The mean time to survival of patients depended upon a threshold number of 5 CTC's per 7.5 ml of blood. Detection of CTC's in metastatic cancer represents a novel prognostic factor in patients with metastatic cancers, suggests a biological role for the presence of tumor cells in the blood, and indicates that the detection of CTC's could be considered an appropriate surrogate marker for prospective therapeutic clinical trials.
Owner:JANSSEN DIAGNOSTICS LLC

Blood test to monitor the genetic changes of progressive cancer using immunomagnetic enrichment and fluorescence in situ hybridization (FISH)

Amplification and overexpression of theHER-2 oncogene in breast cancer is felt to be stable over the course of disease and concordant between the primary tumor and metastases. Therefore, patients with HER-2 negative primary tumors will rarely receive anti-HER-2 antibody therapy. A very sensitive blood test is used to capture circulating tumor cells (CTC's) and evaluate their HER-2 gene status by FISH evaluation. The HER-2 status of the primary tumor and corresponding CTC's is used to assess the ratio of CTC's as a reliable surrogate marker. HER-2 expression of 10 CTC's is sufficient to make a definitive diagnosis of the HER-2 gene status for the whole population of CTC's in patients with recurrent breast cancer.
Owner:JANSSEN DIAGNOSTICS LLC

Method of Using Non-Rare Cells to Detect Rare Cells

The invention provides seminal computational approaches utilizing data from non-rare cells to detect rare cells, such as circulating tumor cells (CTCs). The invention is applicable at two distinct stages of CTC detection; the first being to make decisions about data collection parameters and the second being to make decisions during data reduction and analysis. Additionally, the invention utilizes both one and multi-dimensional parameterized data in a decision making process.
Owner:THE SCRIPPS RES INST +1

Circulating tumor cell identification kit and circulating tumor cell identification method

The invention discloses a circulating tumor cell identification kit and a circulating tumor cell identification method. The circulating tumor cell identification kit comprises a detection probe for detecting mRNA of an epithelial cell marking gene and / or mRNA of a mesenchymal cell marking gene, wherein the epithelial cell marking gene is selected from one or more of CDH2, VIMENTIN, FN1 and AKT2. Multiple RNA probes are adopted in the identification method, specific genes of a plurality of circulating tumor cells (CTCs) can be marked at the same time and are divided into genes I (epithelial genes), genes II (epithelial-mesenchymal genes) and genes III (mesenchymal genes), and false positive results caused by lack of part of the specific genes of the CTCs in a process that the CTCs enter peripheral blood for circulation are reduced; the method can be finished within eight hours, and a single copied mRNA hybridization probe is combined with a corresponding fluorescent probe by virtue of a signal amplification system, so that the detection sensitivity of in-situ RNA (Ribonucleic Acid) hybridization is remarkably improved.
Owner:SUREXAM BIO TECH

Methods and Apparatus for Magnetic Separation of Cells

Described here is an automated robotic device that isolates circulating tumor cells (CTCs) or other biological structures with extremely high purity. The device uses powerful magnetic rods covered in removable plastic sleeves. These rods sweep through blood samples, capturing, e.g., cancer cells labeled with antibodies linked to magnetically responsive particles such as superparamagnetic beads. Upon completion of the capturing protocol, the magnetic rods undergo several rounds of washing, thereby removing all contaminating blood cells. The captured target cells are released into a final capture solution by removing the magnetic rods from the sleeves. Additionally, cells captured by this device show no reduced viability when cultured after capture. Cells are captured in a state suitable for genetic analysis. Also disclosed are methods for single cell analysis. Being robotic allows the device to be operated with high throughput.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products