Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

277 results about "Re entry" patented technology

Removable wound closure

A system and method for the temporary closure of a wound, especially an abdominal wound, to facilitate re-entry, final closure, and long term healing of the wound. An abdominal wound dressing and methods of use are described that enable the application of negative pressure to the wound site in a site healing promoting manner while also limiting the formation of adhesions that would prevent the removal of the dressing. The dressing comprises a layer of porous foam material (36) enclosed by sheets of elastomeric material (38) punctuated by a number of appropriately placed holes (34). Multiple layers of porous foam may also be used. A suction tube connector (16) is provided on an upper surface of a layer of foam (12) for connection to a negative pressure source. At least one layer of foam is enclosed in elastomeric material and is placed in direct contact with the tissue within the open wound. Fluids are drawn by negative pressure through the holes positioned in the elastomeric envelope, and through the foam. If multiple foam layers are employed, the lower layer(s) of foam are of a finer porosity while the upper layer of foam is coarse. An adhesive elastomeric sheet (14) covers the entire wound dressing and seals the edges to the skin surrounding the wound. An appropriate vacuum device is attached to the suction tube connector.
Owner:KCI LICENSING INC

Cluster tool architecture for sulfur trioxide processing

A cluster tool architecture and method are provided for processing substrates by exposure to a process environment, including a reactive gas, such as sulfur trioxide, as well as prior and subsequent treatments thereto. The cluster tool architecture comprises: (a) an atmospheric processing area, maintained at atmospheric pressure or higher; (b) cassette means for introducing a plurality of the substrates into the atmospheric processing area; (c) at least one process station in the atmospheric processing area; (d) an enclosed vacuum processing area, maintained at a vacuum pressure; (e) a first buffer station between the atmospheric processing area and the enclosed vacuum processing area; (f) at least one process station in the enclosed vacuum processing area isolated from the enclosed vacuum processing area by an isolation valve for exposing the substrates to the process environment; (g) a second buffer station between the atmospheric processing area and the enclosed vacuum processing area; (h) an atmospheric transfer arm in the atmospheric processing area for transferring the substrates from the cassette means between one of the buffer stations and at least one process station in the atmospheric processing area and then to the cassette means; and (i) a vacuum transfer arm in the enclosed vacuum processing area for transferring the substrates from one of the buffer stations to one of the vacuum process stations in the enclosed vacuum processing area and from that vacuum process station in the enclosed vacuum processing area to the buffer station, wherein both buffer stations are equally accessible to both the atmospheric transfer arm and the vacuum transfer arm. The cluster tool architecture integrates atmospheric or high pressure processing with vacuum processing. Since integration allows random access, there is a freedom of programming process flow. The architecture allows re-entry of substrates, so that process steps can be repeated at any time, and it allows substrates to be replaced back into original cassette after process is complete.
Owner:BEST LABEL

Quick trajectory programming method based on smooth glide trajectory analytic solution

The invention discloses a quick trajectory programming method based on a smooth glide trajectory analytic solution. The quick trajectory programming method based on the smooth glide trajectory analytic solution includes that step 1, modeling glide trajectory programming problems; step 2, designing glide trajectory programming variables; step 3, calculating a glide trajectory analytic solution; step 4, designing a glide trajectory terminal speed control scheme; step 5, designing a glide trajectory re-entry corridor regulating proposal; step 6, generating initial values of glide trajectory programming; step 7, designing a glide trajectory programming flow. The quick trajectory programming method based on the smooth glide trajectory analytic solution uses longitudinal maneuvering acceleration proportion coefficients and transverse maneuvering acceleration proportion coefficients as the glide trajectory programming variables so that differential equations of the trajectory inclination angle, trajectory deflection angle, height, longitude and latitude in motion equations do not comprise a speed item. The quick trajectory programming method based on the smooth glide trajectory analytic solution obtains the glide trajectory analytic solution corresponding to a fixed longitudinal maneuvering acceleration proportion coefficient and a fixed transverse maneuvering acceleration proportion coefficient.
Owner:BEIHANG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products