Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

60 results about "Surgical Adhesions" patented technology

Method of preventing surgical adhesions

The present invention relates to a method and composition for preventing surgical adhesions during surgery. Tissue surfaces and / or surgical articles involved in the surgery are separated by a biomaterial provided in the form of a non-crosslinked, decellularized and purified mammalian tissue (e.g. bovine pericardium). The biomaterial effectively inhibits fibrosis, scar formation, and surgical adhesions, while also serving as a scaffold for recellularization of the tissue site.
Owner:SYNOVIS LIFE TECH

Sutures and Anti-scarring agents

InactiveUS20090226500A1Reducing excessive scarringReducing surgical adhesionSuture equipmentsBiocideHost tissueFibrosis
Sutures are used in combination with anti-scarring agents to inhibit fibrosis between the sutures and the host tissues into which the sutures are inserted. Compositions and methods are described for use in reducing excessive scarring, surgical adhesion, and other disorders.
Owner:ANGIOTECH PHARMA INC

Apparatus and Method for Limiting Surgical Adhesions

A composite prosthesis and method for limiting the incidence of postoperative adhesions. The composite includes a non-inflammatory or coated mesh and a barrier material which prevents exposure of tissue elsewhere in the body to tissue covered by the composite prosthesis. The barrier material is absorbable which allows tissue through-growth and localization of the composite prosthetic. In use, the composite prosthesis is positioned over the tissue defect and may be positioned with the barrier material oriented against the tissue defect or repair site.
Owner:PROMETHEAN SURGICAL DEVICES

Methods and compositions based on inhibition of cell invasion and fibrosis by anionic polymers

The present invention relates to the discovery that biocompatible anionic polymers can effectively inhibit fibrosis, scar formation, and surgical adhesions. The invention is predicated on the discovery that anionic polymers effectively inhibit invasion of cells associated with detrimental healing processes, and in particular, that the effectiveness of an anionic polymer at inhibiting cell invasion correlates with the anionic charge density of the polymer. Thus the present invention provides a large number of materials for use in methods of inhibiting fibrosis and fibroblast invasion. Anionic polymers for use in the invention include but are not limited to natural proteoglycans, and the glycosaminoglycan moieties of proteoglycans. Additionally, anionic carbohydrates and other anionic polymers may be used. The anionic polymers dextran sulfate and pentosan polysulfate are preferred. In a more preferred embodiment, dextran sulfate, in which the sulfur content is greater than about 10% by weight, may be used. In a more preferred embodiment, the average molecular weight is about 40,000 to 500,000 Daltons. The present invention provides compositions and methods to inhibit fibrosis and scarring associated with surgery. The invention further provides compositions and methods to inhibit glial cell invasion, detrimental bone growth and neurite outgrowth. In a preferred embodiment, the inhibitory compositions further comprise an adhesive protein.
Owner:TRIAD

Apparatus and method for limiting surgical adhesions

The present invention relates to a composite prosthesis including a coated mesh having at least one opening through a first surface and a second surface of the coated mesh; the coated mesh comprising a mesh and a biocompatible coating substantially surrounding each filament of the mesh, wherein the biocompatible coating is formed by coating the mesh with a polyol prepolymer and curing the prepolymer, the prepolymer comprising a polyalkylene oxide polyol end capped with isocyanate, the polyalkylene oxide polyol having from about 70% to about 95% ethylene oxide groups and the remainder propylene oxide; and a barrier material comprising a biocompatible membrane constructed and arranged to cover at least one surface of the coated mesh, wherein the barrier material comprises a biologic material.
Owner:PROMETHEAN SURGICAL DEVICES

Method for inhibition of bone growth by anionic polymers

The present invention relates to the discovery that biocompatible anionic polymers can effectively inhibit fibrosis, scar formation, and surgical adhesions. The invention is predicated on the discovery that anionic polymers effectively inhibit invasion of cells associated with detrimental healing processes, and in particular, that the effectiveness of an anionic polymer at inhibiting cell invasion correlates with the anionic charge density of the polymer. Thus the present invention provides a large number of materials for use in methods of inhibiting fibrosis and fibroblast invasion. Anionic polymers for use in the invention include but are not limited to natural proteoglycans, and the glycosaminoglycan moieties of proteoglycans. Additionally, anionic carbohydrates and other anionic polymers may be used. The anionic polymers dextran sulfate and pentosan polysulfate are preferred. In a more preferred embodiment, dextran sulfate, in which the sulfur content is greater than about 10% by weight, may be used. In a more preferred embodiment, the average molecular weight is about 40,000 to 500,000 Daltons. The present invention provides compositions and methods to inhibit fibrosis and scarring associated with surgery. The invention further provides compositions and methods to inhibit glial cell invasion, detrimental bone growth and neurite outgrowth. In a preferred embodiment, the inhibitory compositions further comprise an adhesive protein.
Owner:TRIAD

Surgical hydrogel

The invention provides a hydrogel suitable for use in wound healing, particularly for reducing post-surgical adhesions. The hydrogel comprises cross-linked derivatives of chitosan and dextran polymers. The hydrogel forms when solutions of the polymers are combined.
Owner:MEDTRONIC XOMED INC

Method of preventing post-operative surgical adhesion

A method for preventing adhesion using a co-polyester comprising the reaction product of a polycondensation polyester and at least one lactone, wherein the polycondensation polyester comprises the reaction product of diglycolic acid and / or a derivative thereof and ethylene glycol; and the co-polyester comprises about 40 to 50% by weight of the polycondensation polyester based on the total weight of the co-polyester.
Owner:ETHICON INC

Immunomodulating polymers

InactiveUS7026285B2Suppressing antibody responseConducive to survivalOrganic active ingredientsBiocideDiseaseT cell
Methods and products for inducing IL-2 secretion, inducing IL-10 secretion, activating T cells, suppressing IgG antibody response to specific antigen, promoting allograft survival, reducing postoperative surgical adhesion formation, and protecting against abscess formation associated with surgery, trauma or diseases that predispose the host to abscess formation are provided. The methods of the invention are accomplished using an immunomodulator which is a polymer having at least two repeating charge motifs separated by at least a certain minimum distance.
Owner:THE BRIGHAM & WOMEN S HOSPITAL INC

Immunomodulating polymers

Methods and products for inducing IL-2 secretion, inducing IL-10 secretion, activating T cells, suppressing IgG antibody response to specific antigen, promoting allograft survival, reducing postoperative surgical adhesion formation, and protecting against abscess formation associated with surgery, trauma or diseases that predispose the host to abscess formation are provided. The methods of the invention are accomplished using an immunomodulator which is a polymer having at least two repeating charge motifs separated by at least a certain minimum distance.
Owner:THE BRIGHAM & WOMEN S HOSPITAL INC

Drug delivery from rapid gelling polymer composition

Compositions are disclosed that afford drug delivery from two-part polymer compositions that rapidly form covalent linkages when mixed together. Such compositions are particularly well suited for use in a variety of tissue related applications when rapid adhesion to the tissue and gel formation is desired along with drug delivery. For example, the compositions are useful as tissue sealants, in promoting hemostasis, in effecting tissue adhesion, in providing tissue augmentation, and in the prevention of surgical adhesions.
Owner:ANGIOTECH INT AG (CH)

Method of preventing post-operative surgical adhesion

A method for preventing adhesion using a co-polyester comprising the reaction product of a polycondensation polyester and at least one lactone, wherein the polycondensation polyester comprises the reaction product of diglycolic acid and / or a derivative thereof and ethylene glycol; and the co-polyester comprises about 40 to 50% by weight of the polycondensation polyester based on the total weight of the co-polyester.
Owner:ETHICON INC

Drug delivery from rapid gelling polymer composition

Compositions are disclosed that afford drug delivery from two-part polymer compositions that rapidly form covalent linkages when mixed together. Such compositions are particularly well suited for use in a variety of tissue related applications when rapid adhesion to the tissue and gel formation is desired along with drug delivery. For example, the compositions are useful as tissue sealants, in promoting hemostasis, in effecting tissue adhesion, in providing tissue augmentation, and in the prevention of surgical adhesions.
Owner:ANGIOTECH INT AG (CH)

Treatment of surgical adhesions

Connexin modulation for the treatment of surgical adhesions, and associated methods, compositions, and articles.
Owner:BECKER DAVID LAWRENCE +2

Fibrous tissue sealant and method of using same

Disclosed herein is a fibrous tissue sealant in the form of an anhydrous fibrous sheet comprising a first component which is a fibrous polymer containing electrophilic or nucleophilic groups and a second component capable of crosslinking the first component when the sheet is exposed to an aqueous medium, thereby forming a crosslinked hydrogel that is adhesive to biological tissue. The fibrous tissue sealant may be useful as a general tissue adhesive for medical and veterinary applications such as wound closure, supplementing or replacing sutures or staples in internal surgical procedures, tissue repair, and to prevent post-surgical adhesions. The fibrous tissue sealant may be particularly suitable for use as a hemostatic sealant to stanch bleeding from surgical or traumatic wounds.
Owner:ACTAMAX SURGICAL MATERIALS

Tissue adhesive and sealant comprising polyglycerol aldehyde

A tissue adhesives and sealant formed by reacting a polyglycerol aldehyde with a water-dispersible, multi-arm amine is described. The tissue adhesive and sealant may be useful for medical and veterinary applications, including, but not limited to, wound closure, supplementing or replacing sutures or staples in internal surgical procedures such as intestinal anastomosis and vascular anastomosis, tissue repair, preventing leakage of fluids such as blood, bile, gastrointestinal fluid and cerebrospinal fluid, ophthalmic procedures, drug delivery, and to prevent post-surgical adhesions.
Owner:ACTAMAX SURGICAL MATERIALS

Low swell tissue adhesive and sealant formulations

A hydrogel tissue adhesive formed by reacting an aldehyde-functionalized dextran containing pendant aldehyde groups with a multi-arm polyethylene glycol amine is described. The hydrogel exhibits little to no swell upon exposure to physiological conditions. The hydrogel may be useful as a tissue adhesive or sealant for medical applications that require a low swell hydrogel to inhibit complications, such as fibrosis, including scar formation or surgical adhesions.
Owner:ACTAMAX SURGICAL MATERIALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products