Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

44 results about "Time of flight imaging" patented technology

Abstract: Time-of-flight imaging is a subset of imaging science interested in the detection of the time-of-flight of certain waves, usually light, to reconstruct the position of objects in a 3D scene.

Demodulation Pixel with Daisy Chain Charge Storage Sites and Method of Operation Therefor

A demodulation pixel architecture allows for demodulating an incoming modulated electromagnetic wave, normally visible or infrared light. It is based on a charge coupled device (CCD) line connected to a drift field structure. The drift field is exposed to the incoming light. It collects the generated charge and forces it to move to the pick-up point. At this pick-up point, the CCD element samples the charge for a given time and then shifts the charge packets further on in the daisy chain. After a certain amount of shifts, the multiple charge packets are stored in so-called integration gates, in a preferred embodiment. The number of integration gates gives the number of simultaneously available taps. When the cycle is repeated several times, the charge is accumulated in the integration gates and thus the signal-to-noise ratio increases. The architecture is flexible in the number of taps. A dump node can be attached to the CCD line for dumping charge with the same speed as the samples are taken. Different implementations are described herein, which allow for smaller design or faster speed. The pixel structure can be exploited for e.g. 3D time-of-flight imaging. Both heterodyne and homodyne measurements are possible. Due to the highly-efficient charge transport enabled by static drift fields in the photo-sensitive region and small-sized gates in the CCD chain, high frequency bandwidth from just a few Hertz (Hz) up to greater GHz is supported. Thus, the pixel allows for highly-accurate optical distance measurements. Another possible application of this pixel architecture is fluorescence lifetime imaging microscopy (FLIM), where short laser pulses for triggering the fluorescence have to be suppressed.
Owner:AMS SENSORS SINGAPORE PTE LTD

Demodulation pixel with daisy chain charge storage sites and method of operation therefor

ActiveUS8760549B2Reduce mismatchMismatch between samples is strongly reducedTelevision system detailsWave based measurement systemsEngineeringHertz
A demodulation pixel architecture allows for demodulating an incoming modulated electromagnetic wave, normally visible or infrared light. It is based on a charge coupled device (CCD) line connected to a drift field structure. The drift field is exposed to the incoming light. It collects the generated charge and forces it to move to the pick-up point. At this pick-up point, the CCD element samples the charge for a given time and then shifts the charge packets further on in the daisy chain. After a certain amount of shifts, the multiple charge packets are stored in so-called integration gates, in a preferred embodiment. The number of integration gates gives the number of simultaneously available taps. When the cycle is repeated several times, the charge is accumulated in the integration gates and thus the signal-to-noise ratio increases. The architecture is flexible in the number of taps. A dump node can be attached to the CCD line for dumping charge with the same speed as the samples are taken. Different implementations are described herein, which allow for smaller design or faster speed. The pixel structure can be exploited for e.g. 3D time-of-flight imaging. Both heterodyne and homodyne measurements are possible. Due to the highly-efficient charge transport enabled by static drift fields in the photo-sensitive region and small-sized gates in the CCD chain, high frequency bandwidth from just a few Hertz (Hz) up to greater GHz is supported. Thus, the pixel allows for highly-accurate optical distance measurements. Another possible application of this pixel architecture is fluorescence lifetime imaging microscopy (FLIM), where short laser pulses for triggering the fluorescence have to be suppressed.
Owner:AMS SENSORS SINGAPORE PTE LTD

Method for operating a time-of-flight imager pixel

A time-of-flight imager pixel has a light-sensitive region, a first and a second integration gate associated with the light-sensitive region, a first and a second sense node, a first output gate arranged between the first integration gate and the first sense node and a second output gate arranged between the second integration gate and the second sense node, a method for operating such a pixel includes
exposing the light-sensitive region to light so as to optically generate charge carriers;
collecting the charge carriers alternatively under the first and second integration gates;
adjusting voltages of the first and second output gates and the first and second integration gates, thereby transferring a first portion of the charge carriers from the first integration gate into the first sense node and a second portion from the second integration gate into the second sense node;
calculating time-of-flight information based on the first and second portions of charge carriers.
adjusting at least one voltage so as to transfer, if respectively the first and/or second integration gate is close to or in saturation, an amount of charge carriers form the first and/or second integration gate into the first and/or second sense node; and
testing whether a voltage change exceeding a given threshold was thereby provoked in the first and/or second sense node.
Owner:IEE INT ELECTRONICS & ENG SA

Method for operating a time-of-flight imager pixel

A time-of-flight imager pixel has a light-sensitive region, a first and a second integration gate associated with the light-sensitive region, a first and a second sense node, a first output gate arranged between the first integration gate and the first sense node and a second output gate arranged between the second integration gate and the second sense node, a method for operating such a pixel includesexposing the light-sensitive region to light so as to optically generate charge carriers;collecting the charge carriers alternatively under the first and second integration gates;adjusting voltages of the first and second output gates and the first and second integration gates, thereby transferring a first portion of the charge carriers from the first integration gate into the first sense node and a second portion from the second integration gate into the second sense node;calculating time-of-flight information based on the first and second portions of charge carriers.adjusting at least one voltage so as to transfer, if respectively the first and / or second integration gate is close to or in saturation, an amount of charge carriers form the first and / or second integration gate into the first and / or second sense node; andtesting whether a voltage change exceeding a given threshold was thereby provoked in the first and / or second sense node.
Owner:IEE INT ELECTRONICS & ENG SA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products