Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

169 results about "Ultrasound elastography" patented technology

While not visible on conventional grayscale ultrasound (left), a strain elastography image (centre) of the prostate gland detects a cancer (dark red area at lower left).

Ultrasonic elastic imaging system and method

ActiveCN105395218ASolve the problem of inaccurate positioning of transient elastographyOrgan movement/changes detectionInfrasonic diagnosticsUltrasonic sensorControl signal
The invention relates to an ultrasonic elastic imaging system and method. The ultrasonic elastic imaging system comprises a control unit, an exciting unit, a probe and an ultrasonic signal processing unit. The probe comprises an ultrasonic sensor array, a vibration exciter and a pressure sensor. The control unit selects a work mode according to a received user instruction and converts the user instruction into a control signal. The exciting unit receives the controls signal and outputs a vibration exciting signal; the vibration exciter receives the vibration exciting signal and drives the probe to make periodical mechanical vibration; the ultrasonic signal processing unit receives the control signal, transmits and receives ultrasonic waves through the ultrasonic sensor array and performs signal processing on the received ultrasonic waves, and a processing result is sent to the control unit. An instantaneous elastic imaging probe and a B ultrasonic mode probe are combined. The B ultrasonic mode probe has the effects of transmitting and receiving ultrasounds and meanwhile has the function of vibrating an exciting source. Seamless switching of elastic imaging measurement and B ultrasonic mode measurement is achieved through the relevant imaging process and the relevant imaging algorithm. The problem that ultrasonic elastic imaging in the prior art is not accurate is solved.
Owner:INST OF ACOUSTICS CHINESE ACAD OF SCI

Tissue viscoelasticity measuring method based on shear wave amplitude and phase detection

ActiveCN106175831AGood for expanding the scopeGood for leveling upOrgan movement/changes detectionInfrasonic diagnosticsDiseaseViscoelasticity
The invention provides a tissue viscoelasticity measuring method based on shear wave amplitude and phase detection. An acoustic radiation force excitation probe and an ultrasonic echo detection probe are used for detection at the same time, the acoustic radiation force excitation probe generates push wave beams, tissue generates shear waves at certain frequency, the ultrasonic echo detection probe generates detection wave beams to detect amplitude attenuation and phase change of the shear waves on a propagation path, the elasticity modulus and viscosity coefficient of the tissue are estimated through an amplitude attenuation coefficient and a speed detection value, in other words, the elasticity modulus and viscosity coefficient of the tissue can be quantitatively detected at the same time, precise and rich mechanical parameter information is provided for diagnosis of multiple diseases, the clinical application range of ultrasonic elastography can be widened, and the level of ultrasonic elastography can be improved. The method can carry out detection through the shear waves at one frequency, the system complexity and design cost are reduced, detection efficiency is improved, phase detection noise caused by high-frequency shear waves is avoided, and the accuracy of mechanical tissue parameter detection is improved.
Owner:CHONGQING UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products