Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

31results about How to "Maximum cleaning" patented technology

Manufacture of near-net shape titanium alloy articles from metal powders by sintering with presence of atomic hydrogen

Disclosed herein is a process that includes:(a) forming a powder blend by mixing Commercially Pure (C.P.) titanium powder, one or more hydrogenated titanium powders containing around 3.4 to around 3.9 weight % of hydrogen (e.g., hydrogenated titanium powders available or referred to nominally as “titanium hydride” or TiH2), and one or more hydrogenated titanium powders containing around 0.2 to around 3.4 weight % of hydrogen, or a mixture of the hydrogenated titanium powders without the C.P. titanium powder,(b) consolidating the powder blend by either compacting the powder blend using die pressing, direct powder rolling, cold isostatic pressing, impulse pressing, metal injection molding, other room temperature consolidation method, or combination thereof, at a pressure in the range of around 400 to around 960 MPa, or loose sintering, to provide a green compact having a density lower than that of a green compact formed from only C.P. titanium powder, such that the subsequent sintering of said green compacts is promoted by an increased hydrogen content retained in the green compact which provides emission of hydrogen and a high partial pressure during subsequent cleaning and sintering steps,(c) heating the green compact to a temperature ranging from around 100° C. to around 250° C. at a heating rate≦around 15° C. / min, thereby releasing absorbed water from the titanium powder, and holding the green compact at this temperature for a holding time ranging from around 10 to around 360 min, wherein the holding time and a thickness of the green compact are such that there is around 20 to around 24 min of holding time per every 6 mm of the thickness of the green compact,(d) forming β-phase titanium and releasing atomic hydrogen from the hydrogenated titanium by heating the green compact to a temperature of around 400 to around 600° C. in an atmosphere of hydrogen emitted by the hydrogenated titanium and holding the green compact at this temperature for around 5 to around 30 min thereby forming and releasing reaction water from the hydrogenated titanium powder,(e) reducing surface oxides on particles of the titanium powder by contact with atomic hydrogen released by heating of the green compact to a temperature of around 600 to around 700° C. and holding at this temperature for a holding time of around 30 to around 60 min sufficient to transform β-phase titanium into α-phase titanium while preventing dissolution of oxygen in the metallic body of the titanium particles and simultaneously providing maximum cleaning of titanium powders before forming closed pores,(f) diffusion-controlled chemical homogenizing of the green compact and densification of the green compact by heating to around 800 to around 850° C. at a heating rate of around 6 to around 8° C. / min, followed by holding at this temperature for 30-40 min resulting in complete or partial dehydrogenation and more active shrinkage of titanium powder formed from the initial hydrogenated titanium powder to form a cleaned and refined compact,(g) heating the cleaned and refined green compact in vacuum at a temperature in the range of around 1000 to around 1350° C., and holding the cleaned and refined green compact at such temperature for at least around 30 minutes, thereby sintering titanium to form a sintered dense compact, and(h) cooling the sintered dense compact to form a sintered near-net shaped article.
Owner:ADVANCED MATERIALS PRODS

Rubber ball cleaning multipoint centralized ball serving system for condenser

A rubber ball cleaning multipoint centralized ball serving system for a condenser includes a condenser water chamber, a cooling water outlet pipe, a cooling water inlet pipe, a ball recovery net, a second isolating valve, a rubber ball pump, and a check valve. A water inlet end of the condenser water chamber is connected to a plurality of pulse ball serving valves. The plurality of pulse ball serving valves is connected to a ball adding chamber via a rubber ball transfer pipe. The rubber ball transfer pipe is connected to the cooling water inlet pipe via another pulse ball serving valve. The ball adding chamber is connected to the circulating cooling water outlet pipe via a hot water discharging pipe. The hot water discharging pipe is provided with a third isolating valve and a hot water discharging valve. A lower portion of the ball adding chamber is provided with a rubber ball discharge valve. The present system can reduce a quantity of the circulating cooling water that is heated during running of the rubber ball system and again enters the water inlet pipe of the circulating cooling water system, thereby improving a condenser circulating cooling effect. By oppositely and correspondingly operating a pulse ball serving valve and a hot water discharging valve to open or close, a great number of rubber balls are enabled to centrally enter the circulating cooling water inlet pipe and the condenser water chamber within a short time, thereby cleaning the condenser heat exchange pipe in full coverage.
Owner:SHANXI HANDE ENERGY SAVING ENVIRONMENTAL PROTECTION TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products