Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

87 results about "Excitation pattern" patented technology

Method and system for generating a cochlear implant program using multi-electrode stimulation to elicit the electrically-evoked compound action potential

A multichannel cochlear implant system spatially spreads the excitation pattern in the target neural tissue by either: (1) rapid sequential stimulation of a small group of electrodes, or (2) simultaneously stimulating a small group of electrodes. Such multi-electrode stimulation stimulates a greater number of neurons in a synchronous manner, thereby increasing the amplitude of the extra-cellular voltage fluctuation and facilitating its recording. The electrical stimuli are applied simultaneously (or sequentially at a rapid rate) on selected small groups of electrodes while monitoring the evoked compound action potential (ECAP) on a nearby electrode. The presence of an observable ECAP not only validates operation of the implant device at a time when the patient may be unconscious or otherwise unable to provide subjective feedback, but also provides a way for the magnitude of the observed ECAP to be recorded as a function of the amplitude of the applied stimulus. From this data, a safe, efficacious and comfortable threshold level can be obtained which may be used thereafter as the initial setting of the stimulation parameters of the neurostimulation device, or to guide the setting of the stimulation parameters of the neurostimulation device.
Owner:ADVNACED BIONICS LLC

Multi-electrode stimulation to elicit electrically-evoked compound action potential

InactiveUS20080221640A1Good determine appropriate intensity threshold levelSimple technologyElectrotherapyEvoked compound action potentialSequential stimulation
A multichannel neurostimulation device spatially spreads the excitation pattern in the target neural tissue by either: (1) rapid sequential stimulation of a small group of electrodes, or (2) simultaneously stimulating a small group of electrodes. Such multi-electrode stimulation stimulates a greater number of neurons in a synchronous manner, thereby increasing the amplitude of the extra-cellular voltage fluctuation and facilitating its recording. The electrical stimuli are applied simultaneously (or sequentially at a rapid rate) on selected small groups of electrodes while monitoring the evoked compound action potential (ECAP) on a nearby electrode. The presence of an observable ECAP not only validates operation of the implant device at a time when the patient may be unconscious or otherwise unable to provide subjective feedback, but also provides a way for the magnitude of the observed ECAP to be recorded as a function of the amplitude of the applied stimulus. From this data, a safe, efficacious and comfortable threshold level can be obtained which may be used thereafter as the initial setting of the stimulation parameters of the neurostimulation device, or to guide the setting of the stimulation parameters of the neurostimulation device.
Owner:ADVNACED BIONICS LLC

System for generating a cochlear implant program using multi-electrode stimulation to elicit the electrically-evoked compound action potential

A multichannel cochlear implant system spatially spreads the excitation pattern in the target neural tissue by either: (1) rapid sequential stimulation of a small group of electrodes, or (2) simultaneously stimulating a small group of electrodes. Such multi-electrode stimulation stimulates a greater number of neurons in a synchronous manner, thereby increasing the amplitude of the extra-cellular voltage fluctuation and facilitating its recording. The electrical stimuli are applied simultaneously (or sequentially at a rapid rate) on selected small groups of electrodes while monitoring the evoked compound action potential (ECAP) on a nearby electrode. The presence of an observable ECAP not only validates operation of the implant device at a time when the patient may be unconscious or otherwise unable to provide subjective feedback, but also provides a way for the magnitude of the observed ECAP to be recorded as a function of the amplitude of the applied stimulus. From this data, a safe, efficacious and comfortable threshold level can be obtained which may be used thereafter as the initial setting of the stimulation parameters of the neurostimulation device, or to guide the setting of the stimulation parameters of the neurostimulation device.
Owner:ADVNACED BIONICS LLC

Systems and methods for 4-d hyperspectrial imaging

Systems and methods for hyperspectral imaging are described. A hyperspectral imaging system (300), comprising: a sample holder (370) configured to hold a sample; a light source (3010) configured to emit excitation light (402) having one or more wavelengths; a two-dimensional imaging device (380); and an optical system comprising: a first spatial light modulator (320a); a first dispersive element (340a); and a second dispersive element (340b); wherein the optical system is configured to (i) structure the excitation light (402), using the first spatial light modulator (320a), into a predetermined two-dimensional excitation pattern at a conjugate plane of a focal plane in the sample; (ii) spectrally disperse, using the first dispersive element (340a), the excitation light (404); (iii) use excitation pattern (406) to illuminate the sample illuminate the sample in an excitation pattern (406) with the one or more wavelengths dispersed along a first lateral direction within the focal plane; (iv) collect, from the sample, emission light (408); (v) spectrally disperse, using the second dispersive element (340b), the collected emission light (408); and (vi) provide the collected emission light (410) in-focus to the imaging device (380) such that the spectrally dispersed emission light (410) is spectrally dispersed along a second lateral direction.
Owner:VERILY LIFE SCI LLC

Scalable audio coding

The invention relates to an audio encoder and decoder and methods for audio encoding and decoding. In a preferred encoder embodiment an audio signal is encoded by deterministic encoder means to form a first encoded signal part. A spectrum of the audio signal is determined and represented by an excitation pattern, i.e. spectral values corresponding to human auditory filters, as a second encoded signal part. A masking curve is also extracted based on the excitation pattern, thus improving encoding efficiency in terms of bit rate. In a preferred decoder the first encoded signal part is decoded by deterministic decoder means. A noise generator uses the decoded first signal part together with the second signal part, i.e. the excitation pattern for the original audio signal, to generate a noise signal. The noise signal is then added to the first decoded signal part to form an output audio signal. At the decoder side the masking curve is also extracted based on the second encoded signal part, i.e. the excitation pattern. The noise signal is generated so that the output audio signal exhibits an excitation pattern nearly identical to the original audio signal. Thus, a perceived high quality audio is obtained while the encoded signal is scalable since a possible deviation between encoding and decoding of the first signal part is compensated by the noise generator at the decoder side. In preferred embodiments the coding means comprises a sinusoidal coder.
Owner:KONINK PHILIPS ELECTRONICS NV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products