Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

131 results about "Scalar Value" patented technology

A scalar variable, or scalar field, is a variable that holds one value at a time. It is a single component that assumes a range of number or string values. A scalar value is associated with every point in a space. In computing, the term scalar is derived from the scalar processor, which processes one data item at a time.

Apparatus and Method for Performing SIMD Multiply-Accumulate Operations

An apparatus and method for performing SIMD multiply-accumulate operations includes SIMD data processing circuitry responsive to control signals to perform data processing operations in parallel on multiple data elements. Instruction decoder circuitry is coupled to the SIMD data processing circuitry and is responsive to program instructions to generate the required control signals. The instruction decoder circuitry is responsive to a single instruction (referred to herein as a repeating multiply-accumulate instruction) having as input operands a first vector of input data elements, a second vector of coefficient data elements, and a scalar value indicative of a plurality of iterations required, to generate control signals to control the SIMD processing circuitry. In response to those control signals, the SIMD data processing circuitry performs the plurality of iterations of a multiply-accumulate process, each iteration involving performance of N multiply-accumulate operations in parallel in order to produce N multiply-accumulate data elements. For each iteration, the SIMD data processing circuitry determines N input data elements from said first vector and a single coefficient data element from the second vector to be multiplied with each of the N input data elements. The N multiply-accumulate data elements produced in a final iteration of the multiply-accumulate process are then used to produce N multiply-accumulate results. This mechanism provides a particularly energy efficient mechanism for performing SIMD multiply-accumulate operations, as for example are required for FIR filter processes.
Owner:U-BLOX

SQL language extensions for modifying collection-valued and scalar valued columns in a single statement

A technique for updating collection-valued and other complex structured columns in a nested table using a nested extension of an UPDATE statement that uses syntax and semantics to modify collection-valued columns in a way that is analogous to the syntax and semantics of the UPDATE statement that is used to modify scalar-valued columns of the table (called the outer UPDATE). Using the same syntactic and semantic constructs as the table at the outer level allows an existing implementation that processes modifications to relational tables to reuse its implementation techniques for processing outer updates to modify collection-valued columns as well. The UPDATE extensions enable the specification of updates to nested collections embedded at arbitrary levels of depth in the object model. The new syntax is embedded inside the outer UPDATE statement in a way that parallels the structure of the data itself and thus maps more directly to the user's conceptual model of the data. The method for implementing the UPDATE extensions uses a change descriptor, which is a data structure that aggregates substantially all changes, both scalar and collection-valued into a single value that can be applied to the changed collection-valued column. This technique can also be used for modifications to other kinds of complex-structured columns such as objects or xml. The change descriptor includes hierarchical information for the cell, thereby enabling efficient application of multiple updates at various granularity levels in a single operation and enabling the implementation of efficient index maintenance algorithms by updating only the indexes affected by the UPDATE operation and updating only those index rows that were affected by the UPDATE operation.
Owner:MICROSOFT TECH LICENSING LLC

Apparatus and method for performing SIMD multiply-accumulate operations

An apparatus and method for performing SIMD multiply-accumulate operations includes SIMD data processing circuitry responsive to control signals to perform data processing operations in parallel on multiple data elements. Instruction decoder circuitry is coupled to the SIMD data processing circuitry and is responsive to program instructions to generate the required control signals. The instruction decoder circuitry is responsive to a single instruction (referred to herein as a repeating multiply-accumulate instruction) having as input operands a first vector of input data elements, a second vector of coefficient data elements, and a scalar value indicative of a plurality of iterations required, to generate control signals to control the SIMD processing circuitry. In response to those control signals, the SIMD data processing circuitry performs the plurality of iterations of a multiply-accumulate process, each iteration involving performance of N multiply-accumulate operations in parallel in order to produce N multiply-accumulate data elements. For each iteration, the SIMD data processing circuitry determines N input data elements from said first vector and a single coefficient data element from the second vector to be multiplied with each of the N input data elements. The N multiply-accumulate data elements produced in a final iteration of the multiply-accumulate process are then used to produce N multiply-accumulate results. This mechanism provides a particularly energy efficient mechanism for performing SIMD multiply-accumulate operations, as for example are required for FIR filter processes.
Owner:U-BLOX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products