Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

69 results about "TDM Bus" patented technology

A TDM bus is one application of the principle of Time-Division Multiplexing. In a TDM Bus, data or information arriving from an input line is put onto specific timeslots on a high-speed bus, where a recipient would listen to the bus and pick out only the signals for a certain timeslot.

Systems and methods for multiple mode voice and data communications using intelligently bridged TDM and packet buses and methods for implementing language capabilities using the same

Systems and methods by which voice/data communications may occur in multiple modes/protocols are disclosed. In particular, systems and methods are provided for multiple native mode/protocol voice and data transmissions and receptions with a computing system having a multi-bus structure, including, for example, a TDM bus and a packet bus, and multi-protocol framing engines. Such systems preferably include subsystem functions such as PBX, voice mail and other telephony functions, LAN hub and data router. In preferred embodiments, a TDM bus and a packet bus are intelligently bridged and managed, thereby enabling such multiple mode/protocol voice and data transmissions to be intelligently managed and controlled with a single, integrated system. A computer or other processor includes a local area network controller, which provides routing and hub(s) for one or more packet networks. The computer also is coupled to a buffer/framer, which serves to frame/deframe data to/from the computer from TDM bus. The buffer/framer includes a plurality of framer/deframer engines, supporting, for example, ATM and HDLC framing/deframing. The buffer/framer is coupled to the TDM bus by way of a switch/multiplexer, which includes the capability to intelligently map data traffic between the buffer/framer and the TDM bus to various slots of the TDM frames. Preferably, a DSP pool is coupled to buffer/framer in a manner to provide various signal processing and telecommunications support, such as dial tone generation, DTMF detection and the like. The TDM bus is coupled to a various line/station cards, serving to interface the TDM bus with telephone, facsimiles and other telecommunication devices, and also with a various digital and/or analog WAN network services. Language support for such systems is accomplished by way of a program/data structure so that additional language support may be readily implemented, for example, by a non-software programmer using grammar and voice prompt files, which are preferably located in a predetermined directory in the system.
Owner:RPX CORP

Sectorized cell having non-redundant broadband processing unit

A technique for converting a non-sectorized cell to a sectorized cell having multiple sectors utilizing a single broadband processing unit. The spectrum of a given frequency band having a center frequency 'OMEGAo is divided into multiple bands (three, for example) having center frequencies 'OMEGAo, 'OMEGAo-alpha and 'OMEGAo+alpha. In the receive path, respective sub-bands are used to convey analog RF signals from a subscriber in respective sectors to an associated transceiver. Each of the transceivers includes a front end for receiving incoming RF signals and an analog-to-digital converter for converting the analog signal to a digital data stream. The digital data streams from transceivers are combined, i.e., processed by digitally adding, and supplied to a single channelizer which, in turn, supplies the data to a TDM bus for transmission to a PSTN network. In the reverse path from the PSTN network, TDM digital data signals emanating from a TDM bus are supplied to a combiner which feeds each of the respective transceivers which select the appropriate data from the combiner by digital filtering or processing. The transceivers convert the digital signal to analog form. After conversion, power amplifiers associated with the respective sectors effect emission of radiated power in the respective sectors. Advantageously, amplifiers in the sectorized improvement operate at lower power levels than the single high power amplifier of a non-sectorized cell, thereby providing substantial cost savings. More importantly, instead of deploying multiple broadband processing units the improved sectorized cell requires only a single broadband processing unit, thereby providing further economies.
Owner:HANGER SOLUTIONS LLC +1

Timed division multiplex bus connection controller

A bus connection controller in a voice processing is for managing the connection of a timeslot on a time-division multiplex (TDM) bus to a port on an adapter. The voice processing system includes basic time-division multiplex (TDM) connection management to enable the coordination of connections between resources such as channels on line cards (SPacks or VPacks), and channels on digital signal processor (DSPs) cards that provide, amongst others things, voice recognition, text-to-speech, fax capabilities and so on. One of the problems with known voice processing systems having a TDM bus is that there is no facility to allow the use of third party devices without modifications being made to the TDM connection controller. The bus controller comprises: a custom server 42 for sending a first request including a port identifier and using a first protocol for connection or disconnection of a port indicated by said port identifer on an adapter to the TDM bus 26; a timeslot manager for analyzing the first request to determine the port availability and state and for making a second request; device driver means (48), corresponding to the particular adapter, for sending the appropriate signals to the adapter to connect or disconnect the port on the adapter to a time slot 28 on the TDM; and a connection server 46, corresponding to a particular adapter, for analyzing the second request and for making a third request to the device driver means (48) using a second protocol for connection or disconnection of the port on that adapter to the TDM bus 26.
Owner:IBM CORP

Methods for generating voice prompts using grammatical rules in a system proving TDM voice communications and VOIP communications

Systems and methods by which voice / data communications may occur in multiple modes / protocols are disclosed. In particular, systems and methods are provided for multiple native mode / protocol voice and data transmissions and receptions with a computing system having a multi-bus structure, including, for example, a TDM bus and a packet bus, and multi-protocol framing engines. Such systems preferably include subsystem functions such as PBX, voice mail and other telephony functions, LAN hub and data router. In preferred embodiments, a TDM bus and a packet bus are intelligently bridged and managed, thereby enabling such multiple mode / protocol voice and data transmissions to be intelligently managed and controlled with a single, integrated system. A computer or other processor includes a local area network controller, which provides routing and hub(s) for one or more packet networks. The computer also is coupled to a buffer / framer, which serves to frame / deframe data to / from the computer from TDM bus. The buffer / framer includes a plurality of framer / deframer engines, supporting, for example, ATM and HDLC framing / deframing. The buffer / framer is coupled to the TDM bus by way of a switch / multiplexer, which includes the capability to intelligently map data traffic between the buffer / framer and the TDM bus to various slots of the TDM frames. Preferably, a DSP pool is coupled to buffer / framer in a manner to provide various signal processing and telecommunications support, such as dial tone generation, DTMF detection and the like. The TDM bus is coupled to a various line / station cards, serving to interface the TDM bus with telephone, facsimiles and other telecommunication devices, and also with a various digital and / or analog WAN network services. Language support for such systems is accomplished by way of a program / data structure so that additional language support may be readily implemented, for example, by a non-software programmer using grammar and voice prompt files, which are preferably located in a predetermined directory in the system.
Owner:RPX CORP

Systems and methods for voice and data communications including a scalable TDM switch/multiplexer

InactiveUS20110200034A1Effective supportPerformed conveniently and efficientlyTime-division multiplexNetwork connectionsCommunications systemMultiplexer
Integrated communications systems having a scalable or upgradable TDM switch fabric (i.e., e.g., TDM-controlling switch / MUX) are disclosed. At a first point in time a system is first sold, installed and utilized with a first TDM capacity, using a first TDM switch / MUX controlling a first set of TDM streams operating at a first frequency. A first set of line and other cards (e.g., DSP resources) are provided to provide or receive the first set of TDM streams. At a second point in time the system is upgraded by installation of a second TDM switch / MUX; the second TDM switch MUX controls the first set of TDM streams operating at the first frequency and also controls a second set of TDM streams operating at second frequency, which is a frequency different and preferably higher as compared to the first frequency. With at least some of the first cards coupled to the TDM bus, the second TDM switch / MUX couples TDM streams to and from the first cards using the first streams at the first frequency, while concurrently coupling TDM streams to and from the second cards using the second streams at the second frequency. The first switch / MUX preferably operates concurrently with the second switch / MUX to couple streams to and from the TDM bus (e.g., from an HDLC or multi-protocol framing engine, etc.), while the first switch / MUX does not operate to control the TDM bus, as this function is carried out by the second switch / MUX.
Owner:RPX CORP

Systems and methods for TDM/packet communications using telephony station cards including voltage generators

Systems and methods by which voice / data communications may occur in multiple modes / protocols are disclosed. In particular, systems and methods are provided for multiple native mode / protocol voice and data transmissions and receptions with a computing system having a multi-bus structure, including, for example, a TDM bus and a packet bus, and multi-protocol framing engines. Such systems preferably include subsystem functions such as PBX, voice mail and other telephony functions, LAN hub and data router or switch functions. In preferred embodiments, a TDM bus and a packet bus are intelligently bridged and managed, thereby enabling such multiple mode / protocol voice and data transmissions to be intelligently managed and controlled with a single, integrated system. In particular, systems and methods for generating required telephony voltages directly on station cards, rather than on the basis of a large, central ringing or other power supply that supply such telephony voltages to each of the station cards, are disclosed. In accordance with the present invention, a plurality of station cards are provided in the telephony or communications system. One or more DC power supplies provide a source of DC voltage, such as 12 volts, to each of the station cards. The station cards are coupled to a processor of the system. The station cards may support a plurality of analog and / or digital telephony devices, such as telephones facsimile, voice mail, recording, speakerphone, conferencing or other type telephony devices.
Owner:RPX CORP

Systems and methods for voice and data communications including a scalable TDM switch/multiplexer

Integrated communications systems having a scalable or upgradable TDM switch fabric (i.e., e.g., TDM-controlling switch / MUX) are disclosed. At a first point in time a system is first sold, installed and utilized with a first TDM capacity, using a first TDM switch / MUX controlling a first set of TDM streams operating at a first frequency. A first set of line and other cards (e.g., DSP resources) are provided to provide or receive the first set of TDM streams. At a second point in time the system is upgraded by installation of a second TDM switch / MUX; the second TDM switch MUX controls the first set of TDM streams operating at the first frequency and also controls a second set of TDM streams operating at second frequency, which is a frequency different and preferably higher as compared to the first frequency. With at least some of the first cards coupled to the TDM bus, the second TDM switch / MUX couples TDM streams to and from the first cards using the first streams at the first frequency, while concurrently coupling TDM streams to and from the second cards using the second streams at the second frequency. The first switch / MUX preferably operates concurrently with the second switch / MUX to couple streams to and from the TDM bus (e.g., from an HDLC or multi-protocol framing engine, etc.), while the first switch / MUX does not operate to control the TDM bus, as this function is carried out by the second switch / MUX.
Owner:RPX CORP +1

Method and apparatus for interfacing multiple communication devices to a time division multiplexing bus

A time division multiplexing (TDM) method and apparatus for interfacing data from communication channels to a TDM bus. The TDM arrangement uses a shift register to control a tri-state buffer. The shift register regulates the tri-state buffer based on a data bit pattern loaded into the shift register. The data bit pattern corresponds to the status of the individual channels. Each channel is assigned a bit which indicates whether the channel is active or inactive. As the shift register shifts out data, the tri-state buffer allows data to flow onto the TDM bus when a bit indicating an active channel is present and insulates the TDM bus from the communication channels when a bit representing an inactive channel is present. A processor is used to control the interrelationship of the multiple communication channels and to generate the status bits to be loaded into the shift register. The processor fills the shift register through the use of a storage register. In a preferred embodiment, the shift register is capable of shifting out a sufficient number of bits to fill an entire transmission frame operating in T1 (24 channels), E1 (32 channels), 64-slot (64 channels), and 128-slot (128 channels) transmission modes. In addition, the tri-state buffer may perform the additional function of level shifting the voltage level of the data from the multiple communication channels to a level compatible with the TDM bus.
Owner:INTEL CORP

High voltage DC control protection system board card testing device

The invention discloses a high voltage DC control protection system board card testing device comprising a man-machine interface, a control unit, an analog quantity generator, a switching value generator, a communication module and a physics interface module; the control unit and the physics interface module are kept in a CAN bus, TDM bus and Ethernet connection through the communication module, wherein the CAN bus transmits the switching value information, the TDM bus transmits the analog quantity information, and the Ethernet transmits the board card information; the control unit obtains theboard card information accessing the physics interface module through the communication module, starts a corresponding testing flow according to the board card information, and uses the analog quantity generator and the switching value generator to send a test signal to the physics interface module according to the testing flow; the control unit uses the communication module to obtain the test result of the to-be-tested board card, and displays the test result on the man-machine interface. The testing device can test a plurality of board cards of the same or different types in one time, and the detection steps are simple and direct, thus effectively finishing the test works of the high voltage DC control protection system board card.
Owner:国网河南省电力公司超高压公司 +1

Systems for voice and data communications having TDM and packet buses and telephony station cards including voltage generators

Systems and methods by which voice/data communications may occur in multiple modes/protocols are disclosed. In particular, systems and methods are provided for multiple native mode/protocol voice and data transmissions and receptions with a computing system having a multi-bus structure, including, for example, a TDM bus and a packet bus, and multi-protocol framing engines. Such systems preferably include subsystem functions such as PBX, voice mail and other telephony functions, LAN hub and data router or switch functions. In preferred embodiments, a TDM bus and a packet bus are intelligently bridged and managed, thereby enabling such multiple mode/protocol voice and data transmissions to be intelligently managed and controlled with a single, integrated system. In particular, systems and methods for generating required telephony voltages directly on station cards, rather than on the basis of a large, central ringing or other power supply that supply such telephony voltages to each of the station cards, are disclosed. In accordance with the present invention, a plurality of station cards are provided in the telephony or communications system. One or more DC power supplies provide a source of DC voltage, such as 12 volts, to each of the station cards. The station cards are coupled to a processor of the system. The station cards may support a plurality of analog and/or digital telephony devices, such as telephones facsimile, voice mail, recording, speakerphone, conferencing or other type telephony devices.
Owner:RPX CORP

Stratum traceable clock driver for voice dejittering and control

According to an embodiment of the invention, the voice processing logic for a node in a packet-based network includes a shared memory, a counter to be clocked by a signal derived from a stratum traceable clock (STC) reference, a processor, a digital signal processor (DSP) system, and an interface to a time division multiplexed (TDM) bus. The processor is to execute a number of instructions stored in program memory, to thereby process voice payload into a number of voice packets, where the voice payload has been obtained from a number of network packets sent by the sender machine through the network. The host system buffers the voice packets before writing them to the shared memory. One or more voice packets are written in response to a processor interrupt received from the counter. The DSP system is to read the voice packets from the shared memory before processing them, while the TDM bus interface transmits voice data of one or more channels, from the packets processed by the DSP system, over the TDM bus and according to a TDM bus clock. This bus clock is also derived from the STC reference. In this way, the transfer of packets from the host to the DSP is controlled to correspond to the STC reference, so that the delivery and pickup of the voice stream at the TDM bus occurs at essentially the same rate as their counterparts in the sender machine. Such an effect may be achieved without requiring a dedicated TDM controller chip.
Owner:CALIX

Method for monitoring extra high voltage DC power transmission system DC line voltage fluctuation

ActiveCN105548661AFlexible limit settingPrevent failure from expandingElectric power transfer ac networkVoltage measurements onlyLimit valueHigh pressure
The invention relates to a method for monitoring extra high voltage DC power transmission system DC line voltage fluctuation, comprising steps of setting an upper limit value and a lower limit value for a DC line resistor according to a practical construction condition, performing real-time measurement on the DC line voltage through a DC voltage divider and monitoring whether a secondary voltage dividing plate of the DC voltage divider is normal, monitoring the resistor of the DC line, generating a HIGH WARNING alarm signal when the DC line resistance exceeds the upper limit value, generating a LOW WARNING alarm signal when the DC line resistance exceeds the lower limit value, adding a TDM bus data analysis module on the DC voltage divider for analyzing the data of two sets of the TDM measurement buses, obtaining a absolute value after subtracting the DC line voltage of two sets of the measurement systems , converting the absolute value to a per unit value which is compared with a set value, and emitting an EXCEED WARNING alarm signal when the set value is exceeded. The method disclosed by the invention can perform sensitive, rapid and comprehensive monitoring on the line voltage fluctuation of the HVDC power transmission system, can promptly perform early warning and prevents the expansion of the fault range caused by abnormal voltage fluctuation.
Owner:CSG EHV POWER TRANSMISSION

Systems and methods for multiple mode voice and data communications using intelligenty bridged TDM and packet buses and methods for performing telephony and data functions using the same

Systems and methods by which voice / data communications may occur in multiple modes / protocols are disclosed. In particular, systems and methods are provided for multiple native mode / protocol voice and data transmissions and receptions with a computing system having a multi-bus structure, including, for example, a TDM bus and a packet bus, and multi-protocol framing engines. Such systems preferably include subsystem functions such as PBX, voice mail and other telephony functions, LAN hub and data router. In preferred embodiments, a TDM bus and a packet bus are intelligently bridged and managed, thereby enabling such multiple mode / protocol voice and data transmissions to be intelligently managed and controlled with a single, integrated system. A computer or other processor includes a local area network controller, which provides routing and hub(s) for one or more packet networks. The computer also is coupled to a buffer / framer, which serves to frame / deframe data to / from the computer from TDM bus. The buffer / framer includes a plurality of framer / deframer engines, supporting, for example, ATM and HDLC framing / deframing. The buffer / framer is coupled to the TDM bus by way of a switch / multiplexer, which includes the capability to intelligently map data traffic between the buffer / framer and the TDM bus to various slots of the TDM frames. Preferably, a DSP pool is coupled to buffer / framer in a manner to provide various signal processing and telecommunications support, such as dial tone generation, DTMF detection and the like. The TDM bus is coupled to a various line / station cards, serving to interface the TDM bus with telephone, facsimiles and other telecommunication devices, and also with a various digital and / or analog WAN network services.
Owner:RPX CORP

Systems and methods for multiple mode voice and data communications using intelligenty bridged TDM and packet buses

Systems and methods by which voice / data communications may occur in multiple modes / protocols are disclosed. In particular, systems and methods are provided for multiple native mode / protocol voice and data transmissions and receptions with a computing system having a multi-bus structure, including, for example, a TDM bus and a packet bus, and multi-protocol framing engines. Such systems preferably include subsystem functions such as PBX, voice mail and other telephony functions, LAN hub and data router. In preferred embodiments, a TDM bus and a packet bus are intelligently bridged and managed, thereby enabling such multiple mode / protocol voice and data transmissions to be intelligently managed and controlled with a single, integrated system. A computer or other processor includes a local area network controller, which provides routing and hub(s) for one or more packet networks. The computer also is coupled to a buffer / framer, which serves to frame / deframe data to / from the computer from TDM bus. The buffer / framer includes a plurality of framer / deframer engines, supporting, for example, ATM and HDLC framing / deframing. The buffer / framer is coupled to the TDM bus by way of a switch / multiplexer, which includes the capability to intelligently map data traffic between the buffer / framer and the TDM bus to various slots of the TDM frames. Preferably, a DSP pool is coupled to buffer / framer in a manner to provide various signal processing and telecommunications support, such as dial tone generation, DTMF detection and the like. The TDM bus is coupled to a various line / station cards, serving to interface the TDM bus with telephone, facsimiles and other telecommunication devices, and also with a various digital and / or analog WAN network services.
Owner:RPX CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products