Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2497results about "Time-division multiplexing selection" patented technology

Transmission control protocol/internet protocol (TCP/IP) packet-centric wireless point to multi-point (PTMP) transmission system architecture

A packet-centric wireless point to multi-point telecommunications system includes: a wireless base station communicating via a packet-centric protocol to a first data network; one or more host workstations communicating via the packet-centric protocol to the first data network; one or more subscriber customer premise equipment (CPE) stations coupled with the wireless base station over a shared bandwidth via the packet-centric protocol over a wireless medium; and one or more subscriber workstations coupled via the packet-centric protocol to each of the subscriber CPE stations over a second network. The packet-centric protocol can be transmission control protocol/internet protocol (TCP/IP). The packet-centric protocol can be a user datagram protocol/internet protocol (UDP/IP). The system can include a resource allocation means for allocating shared bandwidth among the subscriber CPE stations. The resource allocation is performed to optimize end-user quality of service (QoS). The wireless communication medium can include at least one of: a radio frequency (RF) communications medium; a cable communications medium; and a satellite communications medium. The wireless communication medium can further include a telecommunications access method including at least one of: a time division multiple access (TDMA) access method; a time division multiple access/time division duplex (TDMA/TDD) access method; a code division multiple access (CDMA) access method; and a frequency division multiple access (FDMA) access method.
The first data network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN). The second network includes at least one of: a wireline network; a wireless network; a local area network (LAN); and a wide area network (WAN).
Owner:INTELLECTUAL VENTURES I LLC

Communication system with handset for distributed processing

A communication system comprising at least one mobile handheld telephone handset adapted to communicate via a wireless telephony medium with a telephone network handling system. The handset comprises input devices to receive input from a user and produce signals dependent thereupon, an onboard processor to adapt speech input to produce a voice transmission signal as part of a telephone conversation with a third party; and an antenna to transmit the voice transmission signal via the wireless telephony medium. The telephone network handling system comprises a receiver to receive the voice transmission signal, and means to forward the voice signal to a third party. The handset further comprises a first processor to carry out a first processing step on selected input signals and produce data dependent thereupon which preserves predetermined information necessary to carry out a remote second processing step, an onboard processor to adapt the data according to a conventional wireless telephony protocol to produce a transmission signal, and an antenna to transmit the transmission signal via the wireless telephony medium to the telephone network handling system. The system further comprises a remote processor adapted to receive and adapt the transmission signal from the telephone network handling system to regenerate the data, and to carry out a second processing step on the data and produce an output dependent thereupon.
Owner:CABLE & WIRELESS PLC

Access system for a cellular network

The present invention relates to a method and system for providing access to a cellular network (8), wherein a terminal device (1) is connected to an access device (2) according to access specifications of a broadband access network (12) which is not specifically designed to be used as a part of cellular network (8). The terminal device (1) indicates to the access device (2) that it wishes to be connected to the cellular network (8), and a session or call and a radio bearer is setup between the terminal device (1) and the cellular network (8). To achieve this, a service node (5) provided in the cellular network (8) requests a suitable access bearer from the access network (12) and the access device (2) sets up a corresponding access channel towards the terminal device (1). The terminal device (1) then associates the access channel to the correct radio bearer by using a corresponding identification. Thereby, service functions of the cellular network, e.g. UMTS services, can be distributed via any access network and existing broadband or high-speed access networks can be implemented in new cellular network structures. A huge capacity enhancement can thus be offered to the network operators of the cellular network without any standardization effort or license fee and at very small investment and maintenance costs.
Owner:NOKIA TECHNOLOGLES OY

Transparant non-disruptable ATM network

A method and apparatus for the transparent, non-disruptable transfer of data, particularly multimedia data, through any packet-based network, such as an ATM network is provided. The method of the present invention includes the step of setting a primary path and a secondary path between nodes of a network, or of a network domain. Accordingly, when a switch or node establishes a Virtual Path (VP) to another switch with specified effective bandwidth, it also has an alternate VP that is available, although no bandwidth is actually used. The method of the present invention further includes the step of optimizing the available capacity of the system through management actions. For handling congestion and resource failures, the total effective bandwidth on each physical link is categorized in terms of idle capacity (unused or available), used capacity (for existing VPs), and spare capacity. When a resource failure occurs, the idle capacity is used for real-time switching of the VP and service is not disrupted. This is accomplished by an alarm indication management cell which is delivered when a resource problem is encountered. This management cell sets forth the secondary path and the bandwidth associated therewith. On the other hand, if idle capacity does not exist, the spare capacity is used, while the bandwidth of all other VPs is reconfigured using virtual bandwidth optimization. Therefore, service disruption does not occur. In a wireless, mobile network, the present invention monitors node movement and takes management actions on the basis of such node movement to prevent service disruption.
Owner:HANGER SOLUTIONS LLC +1

Universal serial bus (USB) RAM architecture for use with microcomputers via an interface optimized for integrated services device network (ISDN)

A RAM-based interrupt-driven interface device is disclosed for establishing a communication link between a universal serial bus (USB) host and a microcontroller device for providing a control function, the interface device being operative to receive digital information in the form of command, data and control packets from the host and to process the packets and communicate the processed digital information to the microcontroller device, and in response thereto, the microcontroller device being operative to communicate digital information to the interface device for processing and transfer thereof to the host. The interface device includes means for receiving a command generated by the host through a USB bus, means for storing the host-generated command and for generating an interface device interrupt signal upon storage of said host-generated command for use by the microcontroller device in responding to the host-generated command, a microcontroller bus for transferring microcontroller information and the interface device interrupt signal between the interface device and the microcontroller device. The interface device further includes means for receiving a microcontroller command from the microcontroller device in response to said interface device interrupt signal and means for storing the microcontroller command and it is operative to generate a microcontroller device interrupt signal upon storage of the microcontroller command for use by the interface device in developing an address for identification of the interface device to the host during subsequent communications therebetween, wherein during communication between the host and the interface device, the interface device-developed address is used by the interface device to identify host-provided information in the form of packets, and upon processing of the host-provided information, to provide the microcontroller device with the necessary information to allow it to respond to the host thereby allowing a generic microcontroller device to be flexibly interfaced with a USB, host for communication therebetween.
Owner:SK HYNIX INC

Method and apparatus for traffic shaping in a broadband fiber-based access system

The invention is a novel method and apparatus for controlling the flow of traffic between a host digital terminal (HDT) and a plurality of optical network units (ONUs). Each ONU is connected to the HDT by optical fiber and to a plurality of subscribers by a respective plurality of subscriber drops (typically pre-existing copper twisted pairs). The bandwidth on the fiber, although large, is usually inferior to the total bandwidth that can be transmitted across the subscriber drops. Therefore, both upstream and downstream traffic may become congested at various "choke points" under certain circumstances of usage. Ordinarily, the data is buffered at the choke points, leading to the installation of large queues within each ONU. This solution is not only expensive, but is inadequate since the required queue size is dependent on the maximum transaction size, which has no hard upper bound. In contrast, the present invention provides a traffic shaper located in the HDT, which gives centralized control of the traffic flowing to and from the ONUs. Consideration of the priority and destination of each traffic cell is taken into account by the traffic shaper to ensure that the capacity of the fiber and of the individual drops is never exceeded, irrespective of the transaction sizes, thereby eliminating the need for costly buffers in the outside plant. Any maintenance or repairs of the traffic shaper can be easily effected without field visits, due to its centralized location.
Owner:RPX CLEARINGHOUSE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products