Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

121results about "Osmonium organic compounds" patented technology

Phosphorescent Osmium (II) complexes and uses thereof

There is disclosed herein phosphorescent compounds, uses thereof, and devices including organic light emitting diode (OLEDs) including such compounds. Compounds of interest include: wherein A is Os or Ru The anionic chelating chromophores NˆN, which are formed by connecting one pentagonal ring structure containing at least two nitrogen atoms to a hexagonal pyridine type of fragment via a direct carbon-carbon linkage. L is a neutral donor ligand; the typical example includes carbonyl, pyridine, phosphine, arsine and isocyanide; two neutral L's can also combine to produce the so-called chelating ligand such as 2,2′-bipyridine, 1,10-phenanthroline and N-heterocyclic carbene (NHC) ligand, or bidentate phosphorous ligands such as 1,2-bis(diphenylphosphino)ethane, 1,2-bis(diphenylphosphino)benzene. L can occupy either cis or trans orientation. When L occupies the trans position, the preferred structure contains both the hexagonal fragment of NˆN as well as its pentagonal fragment located at the trans position respect to their counterparts of the second NˆN chromophore. When L occupies the cis position, the preferred structure consists of the pentagonal unit of NˆN chromophores residing opposite to the L. X,1 X2 and X3 independently are C or N; when X2 is N, R1 is omitted, when X3 is N, R2 is omitted, R1 is H, C1-C8 alkyl, C1-C8 substituted phenyl or C1-C4 perfluoroalkyl, R2 is H, F or cyano substituent, X4 is either C or N; X4 may locate at any position of the hexagonal ring, when X4 is N and R3 and R4 are not linked to X4, R3 is H, methyl or C1-C3 small alkyl, R4 is H, methyl or C1-C3 small alkyl, or R3 and R4 together form an additional conjugated unit with structure
Owner:TAO YE +3

Catalyst and Process for the Production of Hydrogen from Ammonia Boranes

InactiveUS20160087295A1Eliminate needEnhanced dehydrogenation kineticsHydrogen productionHydrogen/synthetic gas productionDouble bondSolvent
The present invention relates to a process for the production of hydrogen comprising contacting at least one complex of formula (I), (I) wherein: Xis an anion; M is a metal selected from Ru, Os, Fe, Co and Ni; D is optionally present and is one or more monodentate or multidentate donor ligands; Y1 is selected from CR13, B and N; Z1 and Z2 are each independently selected from ═N, ═P, NR14, PR15, O, S and Se; or Z2 is a direct bond between carbocyclic ring B and substituent R4; each of A and B is independently a saturated, unsaturated or partially unsaturated carbocyclic hydrocarbon ring; R3 and R4 are each independently selected from H, C1-6-alkyl, aryl and C1-6-haloalkyl, and a linker group optionally attached to a solid support; or R3 and R4 together form the following moiety: (AB) Y2 is a direct single bond or double bond, or is CR18; R1, R2, R5-13 and R16-18 are each independently selected from H, C1-6-alkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, C1-6-haloalkyl, NR19R20 and a linker group optionally attached to a solid support; or two or more of said R1-13 and R16-18 groups are linked, together with the carbons to which they are attached, to form a saturated or unsaturated hydrocarbon group; R14, R15, R19 and R20 are each independently selected from H, C1-6-alkyl, C2-6-alkenyl, C2-6-alkynyl, aryl, C1-6-haloalkyl, and a linker group optionally attached to a solid support; with at least one substrate of formula (II), R21R22NH—BHR23R24, wherein R21 to R24 are each independently selected from H, C1-6-alkyl, fluoro-substituted C1-6-alkyl, C6-14-aryl and C6-14-aralkyl, or any two of R21, R22, R23 and R24 are linked to form a C3-10-alkylene group or C3-10-alkenylene group, which together with the nitrogen and/or boron atoms to which they are attached, forms a cyclic group; or a substrate comprising two, three or four substrates of formula (II) linked via one or more bridging groups so as to form a dimeric, trimeric or tetrameric species, and wherein the bridging group is selected from straight or branched C1-6-alkylene optionally substituted by one or more fluoro groups, boron, C6-14-aryl and C6-14-aralkyl; or a substrate comprising two, three or four substrates of formula (II) which are joined so as to form a fused cyclic dimeric, trimeric or tetrameric species. Further aspects of the invention relate to a hydrogen generation system comprising a complex of formula (I), a substrate of formula (II) and a solvent, and to the use of complexes of formula (I) in fuel cells. Another aspect of the invention relates to novel complexes of formula (I).
Owner:UNIV COLLEGE DUBLIN NAT UNIV OF IRELAND DUBLIN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products