Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

202 results about "Chelating ligands" patented technology

Chelating ligand: a ligand that is attached to a central metal ion by bonds from two or more donor atoms.

Preparation method of hydro-treatment catalyst

The invention discloses a preparation method of a hydro-treatment catalyst. The preparation method comprises the following steps: preparing an alumina carrier, preparing an impregnation solution containing the VIII group metal and VIB group metal, wherein the impregnation solution comprises a proper amount of an organic auxiliary agent containing chelating ligand, then impregnating the alumina carrier into the impregnation solution under a proper ultrasonic treatment condition, and drying so as to obtain the hydro-treatment catalyst. The preparation method utilizes the ultrasonic cavitation effect to properly reduce the viscosity of the impregnation solution; at the same time the complexing capacity between the chelating ligand in the organic auxiliary agent and nickel / cobalt is improved by the catalytic function of the ultrasonic, the interaction force between the chelating ligand and nickel / cobalt is strengthened, thus the active metal component is promoted to highly disperse on the carrier surface, furthermore, the existing state of the active metal on the catalyst surface is improved at the same time, the sulfurization degree and sulfurization uniformity of the active metal are both improved, so the activity and stability of the catalyst are both improved. The catalyst is especially suitable for being used in the hydro-denitrogenation process and hydro-desulfurization process of heavy distillate oil.
Owner:CHINA PETROLEUM & CHEM CORP +1

Phosphorescent Osmium (II) complexes and uses thereof

There is disclosed herein phosphorescent compounds, uses thereof, and devices including organic light emitting diode (OLEDs) including such compounds. Compounds of interest include: wherein A is Os or Ru The anionic chelating chromophores NˆN, which are formed by connecting one pentagonal ring structure containing at least two nitrogen atoms to a hexagonal pyridine type of fragment via a direct carbon-carbon linkage. L is a neutral donor ligand; the typical example includes carbonyl, pyridine, phosphine, arsine and isocyanide; two neutral L's can also combine to produce the so-called chelating ligand such as 2,2′-bipyridine, 1,10-phenanthroline and N-heterocyclic carbene (NHC) ligand, or bidentate phosphorous ligands such as 1,2-bis(diphenylphosphino)ethane, 1,2-bis(diphenylphosphino)benzene. L can occupy either cis or trans orientation. When L occupies the trans position, the preferred structure contains both the hexagonal fragment of NˆN as well as its pentagonal fragment located at the trans position respect to their counterparts of the second NˆN chromophore. When L occupies the cis position, the preferred structure consists of the pentagonal unit of NˆN chromophores residing opposite to the L. X,1 X2 and X3 independently are C or N; when X2 is N, R1 is omitted, when X3 is N, R2 is omitted, R1 is H, C1-C8 alkyl, C1-C8 substituted phenyl or C1-C4 perfluoroalkyl, R2 is H, F or cyano substituent, X4 is either C or N; X4 may locate at any position of the hexagonal ring, when X4 is N and R3 and R4 are not linked to X4, R3 is H, methyl or C1-C3 small alkyl, R4 is H, methyl or C1-C3 small alkyl, or R3 and R4 together form an additional conjugated unit with structure
Owner:TAO YE +3

Heteroatom bridged metallocene compounds for olefin polymerization

This invention relates to a transition metal compound represented by the formula:
wherein M is a group 3, 4, 5 or 6 transition metal atom, or a lanthanide metal atom, or actinide metal atom; E is: 1) a substituted or unsubstituted indenyl ligand that is bonded to Y through the four, five, six or seven position of the indenyl ring, or 2) a substituted or unsubstituted heteroindenyl ligand that is bonded to Y through the four, five or six position of the heteroindenyl ring, provided that the bonding position is not the same as the position of the ring heteroatom, or 3) a substituted or unsubstituted fluorenyl ligand that is bonded to Y through the one, two, three, four, five, six, seven or eight position of the fluorenyl ring, or 4) a substituted or unsubstituted heterofluorenyl ligand that is bonded to Y through the one, two, three, four, five or six position of the heteroindenyl ring, provided that the bonding position is not the same as the position of the ring heteroatom; A is a substituted or unsubstituted cyclopentadienyl ligand, a substituted or unsubstituted heterocyclopentadienyl ligand, a substituted or unsubstituted indenyl ligand, a substituted or unsubstituted heteroindenyl ligand, a substituted or unsubstituted fluorenyl ligand, a substituted or unsubstituted heterofluorenyl ligand, or other mono-anionic ligand; Y is a Group 15 or 16 bridging heteroatom substituent that is bonded via the heteroatom to E and A; and X are, independently, univalent anionic ligands, or both X are joined and bound to the metal atom to form a metallocycle ring, or both X join to form a chelating ligand, a diene ligand, or an alkylidene ligand. This invention further relates to catalyst systems comprising the above transiotioon metal compounds, activators and optional supports and their use to polymerize or oligomerize olefins.
Owner:EXXONMOBIL CHEM PAT INC

Method for producing acetic acid by carbonylation of methanol as well as special catalyst and preparation method thereof

The invention discloses a method for producing acetic acid by carbonylation of methanol, a special catalyst and a preparation method thereof. The aminocarboxylate lithium rhodium complex of the present invention has a structure as shown in formula I, wherein, X=BPh4 or I; n=1, 2 or 3. In the present invention, lithium aminocarboxylate is used as a ligand and a rhodium complex to form a positive ion active center structure of a strong and weak coordination bond chelation type, and the positive ion part contains a strongly coordinated N→Rh bond and a weakly coordinated O→Rh bond, The stability and activity of the active center are guaranteed. Lithium metal and rhodium metal are co-located in the structure of the active center, which can form a synergistic catalytic effect; moreover, it can also be used in combination with other catalysts to improve its catalytic activity; The strong catalytic effect of the reaction provides a basis for the excellent performance of the catalyst; at the same time, the combination of lithium iodide, lithium acetate and phosphate is used as a promoter, so that the catalyst of the present invention can catalyze the carbonylation of methanol to produce acetic acid. Excellent overall performance.
Owner:INST OF CHEM CHINESE ACAD OF SCI +1

Method for preparing polyvinylidene fluoride/aluminum oxide hybridization film

The invention discloses a method for preparing polyvinylidene fluoride/aluminum oxide hybridization film, comprising taking polyvinylidene fluoride to be dissolved into solvent; after fully dissolving the polyvinylidene fluoride, adding aluminium isopropoxide and coupling agent into the solution in a stirring state; adding water for hydrolyzation, adding acid for catalysis, and then adding pore-forming agent; stirring for at least 20h to obtain even casting film liquid, and standing still at the room temperature; scraping the casting film liquid into a panel film at the room temperature, placing the panel film in the air, soaking in coagulating bath, and forming a hyperfiltration film; and soaking the hyperfiltration film in the water, and taking out to be dried. The method uses strong chelating ligand and high activity aggregation group to respectively carry out chemical modification on PVDF organic macromolecule and Al2O3 inorganic precursor, so that the hybridization film prepared by a sol-gel method maintains the excellent chemical stability and mechanical performance of a PVD film; furthermore, the hydrophilicity and the film contamination resistance of the hybridization film are added, so that the separation property and the stability of the film can be remarkably improved.
Owner:SOUTH CHINA UNIV OF TECH +2

Biospecific binding reactants labeled with new luminescent lanthanide chelates and their use

This invention relates to a luminescent lanthanide chelate comprising a lanthanide ion and a chelating ligand of formula (I)
wherein
R1 is selected from the group consisting H, —COOH, —COO, —CH2COOH and —CH2COO; G1 is a group consisting of one or two moieties each moiety being selected from the group consisting of ethynediyl, ethenylene, phenylene, biphenylene, naphthylene, pyridylene, pyrazinylene, pyrimidinylene, pyridazinylene, furylene, thienylene, pyrrolylene, imidazolylene, pyrazolylene, thiazolylene, isothiazolylene, oxazolylene, isoxazolylene, fyrazanylene, 1,2,4-triazol-3,5-ylene and oxadiazolylene; G2 for coupling to a biospecific binding reactant is selected from the group consisting of amino, aminooxy, carbonyl, aldehyde or mercapto groups and activated forms made of them; Z is selected from the group consisting of carboxyalkyl amine, ether, thioether, carbonyl and unsubstituted or substitute methyl (—CR2—) wherein group R2 is selected from the group consisting of H, methyl, ethyl and carboxylalkyl; and the lanthanide ion is europium(III), terbium(III), dysprosiym(III) or samarium(III). This invention further relates to a detectable molecule comprising the lanthanide chelate and the use of the molecule in a method of carrying out a biospecific binding assay.
Owner:INNOTRAC DIAGNOSTISC

Efficient nano negative ion releasing agent and preparation method thereof

The invention provides an efficient nano negative ion releasing agent and a preparation method thereof and relates to the field of negative ion releasing materials. The negative ion releasing materials are widely applied to the fields of ceramics, coatings, plastics, spinning, decoration and the like, currently, most negative ion releasing materials are tourmaline and excite negative ion release by adding a large amount of rare earth or composite salt, radioactivity and heavy metal content of the most negative ion releasing materials exceed standard easily, the negative ion release is unstable, and the release efficiency is low. In order to overcome defects in the prior art, the efficient nano negative ion releasing agent is provided and is characterized by being prepared from raw materials in parts by mass as follows: 50-80 parts of the negative ion releasing material, 30-50 parts of an excitation material, 5-28 parts of an energy transfer material and 1-6 parts of a chelating agent. The efficient nano negative ion releasing agent and the preparation method have beneficial effects as follows: the efficient nano negative ion releasing agent is prepared through comprehensive adoption of a nano grinding technology and combination of piezoelectricity and pyroelectricity of the negative ion releasing material as well as chelating ligands of the excitation material and the energy transfer material with a chelating agent.
Owner:上海前引科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products