Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

702 results about "Metal oxide thin films" patented technology

Semiconductive metal oxide thin film ferroelectric memory transistor

The present invention discloses a novel transistor structure employing semiconductive metal oxide as the transistor conductive channel. By replacing the silicon conductive channel with a semiconductive metal oxide channel, the transistors can achieve simpler fabrication process and could realize 3D structure to increase circuit density. The disclosed semiconductive metal oxide transistor can have great potential in ferroelectric non volatile memory device with the further advantages of good interfacial properties with the ferroelectric materials, possible lattice matching with the ferroelectric layer, reducing or eliminating the oxygen diffusion problem to improve the reliability of the ferroelectric memory transistor. The semiconductive metal oxide film is preferably a metal oxide exhibiting semiconducting properties at the transistor operating conditions, for example, In2O3 or RuO2. The present invention ferroelectric transistor can be a metal-ferroelectric-semiconductive metal oxide FET having a gate stack of a top metal electrode disposed on a ferroelectric layer disposed on a semiconductive metal oxide channel on a substrate. Using additional layer of bottom electrode and gate dielectric, the present invention ferroelectric transistor can also be a metal-ferroelectric-metal (optional)-gate dielectric (optional)-semiconductive metal oxide FET.
Owner:SHARP KK

Semiconductive metal oxide thin film ferroelectric memory transistor

The present invention discloses a novel transistor structure employing semiconductive metal oxide as the transistor conductive channel. By replacing the silicon conductive channel with a semiconductive metal oxide channel, the transistors can achieve simpler fabrication process and could realize 3D structure to increase circuit density. The disclosed semiconductive metal oxide transistor can have great potential in ferroelectric non volatile memory device with the further advantages of good interfacial properties with the ferroelectric materials, possible lattice matching with the ferroelectric layer, reducing or eliminating the oxygen diffusion problem to improve the reliability of the ferroelectric memory transistor. The semiconductive metal oxide film is preferably a metal oxide exhibiting semiconducting properties at the transistor operating conditions, for example, In2O3 or RuO2. The present invention ferroelectric transistor can be a metal-ferroelectric-semiconductive metal oxide FET having a gate stack of a top metal electrode disposed on a ferroelectric layer disposed on a semiconductive metal oxide channel on a substrate. Using additional layer of bottom electrode and gate dielectric, the present invention ferroelectric transistor can also be a metal-ferroelectric-metal (optional)-gate dielectric (optional)-semiconductive metal oxide FET.
Owner:SHARP KK

Array substrate and manufacturing method therefor

Embodiments of the invention disclose an array substrate and a manufacturing method therefor. The array substrate comprises a plurality of first thin film transistors and a plurality of second thin film transistors; the first thin film transistors and the second thin film transistors are formed above a substrate; the active layer of each first thin film transistor is low-temperature polysilicon; the active layer of each second thin film transistor is an oxide semiconductor; the first thin film transistors are positioned in a peripheral circuit region of the array substrate; the second thin film transistors are positioned in a display region of the array substrate; the grid electrodes of the first thin film transistors and the second thin film transistors are positioned on different layers; and the source and drain electrodes of the first thin film transistors and the source and drain electrodes of the second thin film transistors are positioned on the same layer. By adoption of the array substrate and the manufacturing method therefor, the problem of incompatibility of two film layers of two types of thin film transistors when the metal oxide thin film transistors and the low-temperature polysilicon thin film transistors are formed in a display panel at the same time is solved, so that the electrical performance and the stability of the display panel are improved.
Owner:XIAMEN TIANMA MICRO ELECTRONICS

Integrated hydrogen sensor made from mixed graphene film, noble metal particles and metallic oxide materials and preparation method thereof

The invention discloses an integrated hydrogen sensor made from mixed graphene film, noble metal particles and metallic oxide materials and a preparation method of the integrated hydrogen sensor. The sensor comprises a substrate, a heating electrode, a heat-conducting insulation layer and a detection electrode; the heating electrode is placed on the substrate; the heat-conducting insulation layer is placed between the heating electrode and the detection electrode and further the sensor further comprises a metallic oxide film deposited on the detection electrode, the noble metal particles deposited on the metallic oxide film, and the graphene film covers the metallic oxide film on which the noble metal particles are deposited. The noble metal particles covering the metallic oxide film are single atoms, wherein the covering rate is 0.05-100 percent, the particle size is 0.2-0.4 nanometers, and the noble metal particles are randomly and uniformly arranged. The metallic oxide film is 10 nanometers to 2 micrometers in thickness. The graphene film is 0.5-1.2 nanometers in thickness. By adopting the integrated hydrogen sensor provided by the invention, high-sensitivity and high-selectivity detection and monitoring for hydrogen can be simultaneously achieved.
Owner:NANJING YIDEGUAN ELECTRONICS TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products