Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

711 results about "Metal oxide thin films" patented technology

Atomic layer deposition of noble metal oxides

Electrically conductive noble metal oxide films can be deposited by atomic layer deposition (ALD)-type processes. In preferred embodiments, Re, Ru, Os and Ir oxides are deposited by alternately and sequentially contacting a substrate with vapor phase pulses of a noble metal precursor and an oxygen source. The noble metal precursor is preferably a betadiketonate compound and the oxygen source is preferably ozone or oxygen plasma. The deposition temperature may be less than about 200° C.
Owner:ASM INTERNATIONAL

Volatile noble metal organometallic complexes

InactiveUS20050033075A1Reduce Van der Waals interactionBoiling and sublimation temperatureFurnaces without endless coreRuthenium organic compoundsIridiumIodide
A series of noble metal organometallic complexes of the general formula (I): MLaXb(FBC)c, wherein M is a noble metal such as iridium, ruthenium or osmium, and L is a neutral ligand such as carbonyl, alkene or diene; X is an anionic ligand such as chloride, bromide, iodide and trifluoroacetate group; and FBC is a fluorinated bidentate chelate ligand such as beta diketonate, beta-ketoiminate, amino-alcoholate and amino-alcoholate ligand, wherein a is an integer of from zero (0) to three (3), b is an integer of from zero (0) to one (1) and c is an 10 integer of from one (1) to three (3). The resulting noble metal complexes possess enhanced volatility and thermal stability characteristics, and are suitable for chemical vapor deposition(CVD) applications. The corresponding noble metal complex is formed by treatment of the FBC ligand with a less volatile metal halide. Also disclosed are CVD methods for using the noble metal complexes as source reagents for deposition of noble metal-containing films such as Ir, Ru and Os, or even metal oxide film materials IrO2, OsO2 and RuO2.
Owner:NATIONAL TSING HUA UNIVERSITY +1

Resistive random accress memory containing a conformal titanium aluminum carbide film and method of making

A plurality of embodiments for ReRAM devices and method of making are described. According to one embodiment, the ReRAM device includes a first electrode film formed on a substrate, a metal oxide film with oxygen vacancies formed on a first electrode film, a conformal TiAlC film, oxidized by diffused oxygen atoms from the metal oxide film, formed on the metal oxide film, and a second electrode film formed on the TiAlC film. According to another embodiment, the ReRAM device includes a pair of vertical metal oxide films, a pair of vertical conformal TiAlC films formed on the pair of vertical metal oxide films, the pair of vertical conformal TiAlC films oxidized by diffused oxygen atoms from the pair of vertical metal oxide films, and an electrode film formed between the pair of vertical conformal TiAlC films.
Owner:TOKYO ELECTRON LTD

Articles comprising large-surface-area bio-compatible materials and methods for making and using them

The present invention provides articles of manufacture comprising biocompatible nanostructures comprising significantly increased surface area for, e.g., organ, tissue and / or cell growth, e.g., for bone, tooth, kidney or liver growth, and uses thereof, e.g., for in vitro testing of drugs, chemicals or toxins, or as in vivo implants, including their use in making and using artificial tissues and organs, and related, diagnostic, screening, research and development and therapeutic uses, e.g., as drug delivery devices. The present invention provides biocompatible nanostructures with significantly increased surface area, such as with nanotube and nanopore array on the surface of metallic, ceramic, or polymer materials for enhanced cell and bone growth, for in vitro and in vivo testing, cleansing reaction, implants and therapeutics. The present invention provides optically transparent or translucent cell-culturing substrates. The present invention provides biocompatible and cell-growth-enhancing culture substrates comprising elastically compliant protruding nanostructure substrates coated with Ti, TiO2 or related metal and metal oxide films.
Owner:RGT UNIV OF CALIFORNIA

Semiconductive metal oxide thin film ferroelectric memory transistor

The present invention discloses a novel transistor structure employing semiconductive metal oxide as the transistor conductive channel. By replacing the silicon conductive channel with a semiconductive metal oxide channel, the transistors can achieve simpler fabrication process and could realize 3D structure to increase circuit density. The disclosed semiconductive metal oxide transistor can have great potential in ferroelectric non volatile memory device with the further advantages of good interfacial properties with the ferroelectric materials, possible lattice matching with the ferroelectric layer, reducing or eliminating the oxygen diffusion problem to improve the reliability of the ferroelectric memory transistor. The semiconductive metal oxide film is preferably a metal oxide exhibiting semiconducting properties at the transistor operating conditions, for example, In2O3 or RuO2. The present invention ferroelectric transistor can be a metal-ferroelectric-semiconductive metal oxide FET having a gate stack of a top metal electrode disposed on a ferroelectric layer disposed on a semiconductive metal oxide channel on a substrate. Using additional layer of bottom electrode and gate dielectric, the present invention ferroelectric transistor can also be a metal-ferroelectric-metal (optional)-gate dielectric (optional)-semiconductive metal oxide FET.
Owner:SHARP KK

Method of growing electrical conductors

This invention relates to manufacturing of integrated circuits (ICs) and especially conductive layers suitable for use in an IC. According to the preferred method a metal oxide thin film is deposited on a substrate surface and reduced thereafter essentially into a metallic form with an organic reducing agent. The metal oxide is preferably deposited according to the principles of atomic layer deposition (ALD) using a metal source chemical and an oxygen source chemical. The reduction step is preferably carried out in an ALD reactor using one or more vaporized organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO and —COOH.
Owner:COLOR ACCESS +1

Method of growing electrical conductors

A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a reducing agent, thereby forming a seed layer. In one arrangement, the reducing agent comprises one or more organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO, and —COOH. In another arrangement, the reducing agent comprises an electric current.
Owner:ASM INTERNATIONAL

Method of forming robust metal, metal oxide, and metal alloy layers on ion-conductive polymer membranes

The invention is to a dual beam process for providing an ion-conducting membrane with a thin metal or metal-oxide film. The process includes the cleaning of a membrane surface with a low energy electron beam followed by the deposition of the metal or metal-oxide film by a high energy electron beam of ions.
Owner:BASF FUEL CELL

Method of growing electrical conductors

A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a gaseous inorganic reducing agent, thereby forming a metal layer. In preferred arrangements, the reducing agent comprises of thermal hydrogen (H2), hydrogen radicals (H*) and / or carbon monoxide (CO).
Owner:ASM INTERNATIONAL

Biochemical instrument

It is an object of the present invention to provide a biochemical instrument wherein an adhesive layer that has hydrophilic properties, heat resistance, and satisfactory adhesiveness is provided between a plastic material surface and a hydrophilic polymer layer. The present invention provides a biochemical instrument comprising a plastic material that is coated on its surface with a hydrophilic polymer, which comprises a metal oxide thin film between the plastic material and the hydrophilic polymer layer, wherein the film stress of said metal oxide thin film is less than 5.4×1021 dyn / cm2.
Owner:FUJIFILM CORP

Method of growing electrical conductors

A method for forming a conductive thin film includes depositing a metal oxide thin film on a substrate by an atomic layer deposition (ALD) process. The method further includes at least partially reducing the metal oxide thin film by exposing the metal oxide thin film to a reducing agent, thereby forming a seed layer. In one arrangement, the reducing agent comprises one or more organic compounds that contain at least one functional group selected from the group consisting of —OH, —CHO, and —COOH. In another arrangement, the reducing agent comprises an electric current.
Owner:ASM INTERNATIONAL

Process for producing metal oxide films at low temperatures

A process for producing metal oxide thin films on a substrate by the ALD method comprises the steps of bonding no more than about a molecular monolayer of a gaseous metal compound to a growth substrate, and converting the bonded metal compound to metal oxide. The bonded metal compound is converted to metal oxide by contacting it with a reactive vapour source of oxygen other than water, and the substrate is kept at a temperature of less than 190° C. during the growth process. By means of the invention it is possible to produce films of good quality at low temperatures. The dielectric thin films having a dense structure can be used for passivating surfaces that do not endure high temperatures. Such surfaces include, for example, organic films in integrated circuits and polymer films such as in organic electroluminescent displays and organic solar cells. Further, when a water-free oxygen source is used, surfaces that are sensitive to water can be passivated.
Owner:ASM INTERNATIONAL

Process to make metal oxide thin film transistor array with etch stopping layer

The present invention generally relates to thin film transistors (TFTs) and methods of making TFTs. The active channel of the TFT may comprise one or more metals selected from the group consisting of zinc, gallium, tin, indium, and cadmium. The active channel may also comprise nitrogen and oxygen. To protect the active channel during source-drain electrode patterning, an etch stop layer may be deposited over the active layer. The etch stop layer prevents the active channel from being exposed to the plasma used to define the source and drain electrodes. The etch stop layer and the source and drain electrodes may be used as a mask when wet etching the active material layer that is used for the active channel.
Owner:APPLIED MATERIALS INC

Semiconductive metal oxide thin film ferroelectric memory transistor

The present invention discloses a novel transistor structure employing semiconductive metal oxide as the transistor conductive channel. By replacing the silicon conductive channel with a semiconductive metal oxide channel, the transistors can achieve simpler fabrication process and could realize 3D structure to increase circuit density. The disclosed semiconductive metal oxide transistor can have great potential in ferroelectric non volatile memory device with the further advantages of good interfacial properties with the ferroelectric materials, possible lattice matching with the ferroelectric layer, reducing or eliminating the oxygen diffusion problem to improve the reliability of the ferroelectric memory transistor. The semiconductive metal oxide film is preferably a metal oxide exhibiting semiconducting properties at the transistor operating conditions, for example, In2O3 or RuO2. The present invention ferroelectric transistor can be a metal-ferroelectric-semiconductive metal oxide FET having a gate stack of a top metal electrode disposed on a ferroelectric layer disposed on a semiconductive metal oxide channel on a substrate. Using additional layer of bottom electrode and gate dielectric, the present invention ferroelectric transistor can also be a metal-ferroelectric-metal (optional)-gate dielectric (optional)-semiconductive metal oxide FET.
Owner:SHARP KK

Method of integrating inorganic light emitting diode with oxide thin film transistor for display applications

A method of fabricating an active matrix display is disclosed in which one or more oxide thin film transistors is monolithically integrated with an inorganic light emitting diode structure. The method comprises forming an array of inorganic light emitting diodes over a substrate defining a plurality of sub-pixels, depositing an insulating layer over the inorganic LED array, forming conductive vias through the insulating layer, one via for each LED in the LED array, and forming a metal oxide thin film transistor backplane, including an array of pixel driver circuits, over the dielectric layer and conductive vias, wherein one driver circuit electrically controls each sub-pixel through the dielectric layer.
Owner:EMAGIN CORP

Nanotube coatings for implantable electrodes

Coatings for implantable electrodes consisting of single- or multi-walled nanotubes, nanotube ropes, carbon whiskers, and a combination of these are described. The nanotubes can be carbon or other conductive nanotube-forming materials such as a carbon-doped boron nitride. The nanotube coatings are grown “in situ” on a catalytic substrate surface from thermal decomposition, or they are bonded to the substrate using a metal or conductive metal oxide thin film binder deposited by means of a metal compound precursor in liquid form. In the latter case, the precursor / nanotube coating is then converted to a pure metal or conductive metal oxide, resulting in the desired surface coating with imbedded nanotubes.
Owner:WILSON GREATBATCH LTD

Array substrate and manufacturing method therefor

Embodiments of the invention disclose an array substrate and a manufacturing method therefor. The array substrate comprises a plurality of first thin film transistors and a plurality of second thin film transistors; the first thin film transistors and the second thin film transistors are formed above a substrate; the active layer of each first thin film transistor is low-temperature polysilicon; the active layer of each second thin film transistor is an oxide semiconductor; the first thin film transistors are positioned in a peripheral circuit region of the array substrate; the second thin film transistors are positioned in a display region of the array substrate; the grid electrodes of the first thin film transistors and the second thin film transistors are positioned on different layers; and the source and drain electrodes of the first thin film transistors and the source and drain electrodes of the second thin film transistors are positioned on the same layer. By adoption of the array substrate and the manufacturing method therefor, the problem of incompatibility of two film layers of two types of thin film transistors when the metal oxide thin film transistors and the low-temperature polysilicon thin film transistors are formed in a display panel at the same time is solved, so that the electrical performance and the stability of the display panel are improved.
Owner:XIAMEN TIANMA MICRO ELECTRONICS

Array substrate and manufacturing method thereof as well as display equipment

The embodiment of the invention discloses an array substrate and a manufacturing method thereof as well as display equipment, which belong to the technical field of liquid crystal displays and are used for lowering manufacturing cost. The manufacturing method comprises manufacturing processes of a film transistor, a first transparent electrode and a second transparent electrode; the first and the second transparent electrodes generate a multi-dimensional electric field; the manufacturing process of the first transparent electrode comprises formation of a metallic oxide film which has characteristics of a semiconductor; and the first transparent electrode is formed via a metalizing process of a part of the metallic oxide film, a semi-conductor active layer is formed by the rest of the metallic oxide film, which is executed for metalizing process. The manufacturing method disclosed by the embodiment of the invention is applicable to manufacturing of the liquid crystal displays.
Owner:BOE TECH GRP CO LTD

Polymer-assisted deposition of films

A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.
Owner:LOS ALAMOS NATIONAL SECURITY

Hybrid beam deposition system and methods for fabricating metal oxide-zno films, p-type zno films, and zno-based II-VI compound semiconductor devices

A hybrid beam deposition (HBD) system and methods according to the present invention utilizes a unique combination of pulsed laser deposition (PLD) technique and equipment with equipment and techniques that provide a radical oxygen rf-plasma stream to effectively increase the flux density of available reactive oxygen at a deposition substrate for the effective synthesis of metal oxide thin films. The HBD system and methods of the present invention further integrate molecular beam epitaxy (MBE) and / or chemical vapor deposition (CVD) techniques and equipment in combination with the PLD equipment and technique and the radical oxygen rf-plasma stream to provide elemental source materials for the synthesis of undoped and / or doped metal oxide thin films as well as synthesis of undoped and / or doped metal-based oxide alloy thin films.
Owner:MOXTRONICS

Thin film materials of amorphous metal oxides

Amorphous metal oxide thin film is produced by removing through oxygen plasma treatment the organic component from an organics / metal oxide composite thin film having thoroughly dispersed therein such organic component at molecular scale. This ensures production of amorphous metal oxide thin film with low density and excellent thickness precision.
Owner:RIKEN

Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same

The present invention relates to a diazadiene (DAD)-based metal compound, to a method for preparing the same and to a method for forming a thin film using the same. The diazadiene (DAD)-based metal compound of the present invention is provided in a gaseous state to be formed into a metal thin film or a metal oxide thin film by chemical vapor deposition or atomic layer deposition. Particularly, the diazadiene-based organic metal compound of the present invention has advantages in that it may be formed into a metal thin film or a metal oxide thin film and it can be prepared in a relatively inexpensive way without using highly toxic ligands.
Owner:UP CHEM

Ferroelectric integrated circuit having hydrogen barrier layer

A hydrogen diffusion barrier in an integrated circuit is located to inhibit diffusion of hydrogen to a thin film of metal oxide material in an integrated circuit. The hydrogen diffusion barrier comprises at least one of the following nitrides: aluminum titanium nitride (Al2Ti3N6), aluminum silicon nitride (Al2Si3N6), aluminum niobium nitride (AlNb3N6), aluminum tantalum nitride (AlTa3N6), aluminum copper nitride (Al2Cu3N4), tungsten nitride (WN), and copper nitride (Cu3N2). The thin film of metal oxide is ferroelectric or high-dielectric, nonferroelectric material. Preferably, the metal oxide comprises ferroelectric layered superlattice material. Preferably, the hydrogen barrier layer is located directly over the thin film of metal oxide.
Owner:SYMETRIX

Solid-state imaging device and method for producing the same

In the solid-state imaging device of the present invention having a photoelectric conversion section and a charge transfer section equipped with a charge transfer electrode for transferring an electric charge generated in the photoelectric conversion section, the charge transfer electrode has an alternate arrangement of a first layer electrode comprising a first layer electrically conducting film and a second layer electrode comprising a second layer electrically conducting film, which are formed on a gate oxide film comprising a laminate film consisting of a silicon oxide film and a metal oxide thin film, and the first layer electrode and the second layer electrode are separated by insulation with an interelectrode insulating film comprising a sidewall insulating film formed by a CVD process to cover the lateral wall of the first layer electrode.
Owner:FUJIFILM CORP

Integrated hydrogen sensor made from mixed graphene film, noble metal particles and metallic oxide materials and preparation method thereof

The invention discloses an integrated hydrogen sensor made from mixed graphene film, noble metal particles and metallic oxide materials and a preparation method of the integrated hydrogen sensor. The sensor comprises a substrate, a heating electrode, a heat-conducting insulation layer and a detection electrode; the heating electrode is placed on the substrate; the heat-conducting insulation layer is placed between the heating electrode and the detection electrode and further the sensor further comprises a metallic oxide film deposited on the detection electrode, the noble metal particles deposited on the metallic oxide film, and the graphene film covers the metallic oxide film on which the noble metal particles are deposited. The noble metal particles covering the metallic oxide film are single atoms, wherein the covering rate is 0.05-100 percent, the particle size is 0.2-0.4 nanometers, and the noble metal particles are randomly and uniformly arranged. The metallic oxide film is 10 nanometers to 2 micrometers in thickness. The graphene film is 0.5-1.2 nanometers in thickness. By adopting the integrated hydrogen sensor provided by the invention, high-sensitivity and high-selectivity detection and monitoring for hydrogen can be simultaneously achieved.
Owner:NANJING YIDEGUAN ELECTRONICS TECH +1

High temperature atomic layer deposition of dielectric oxides

Methods are provided herein for forming metal oxide thin films by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures such that the thin film is crystalline as deposited. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications.
Owner:ASM INTERNATIONAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products