Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

40 results about "Biomarker Analysis" patented technology

A method of biological assay that looks for the presence of unique molecules or sequences considered indicative for a condition or state.

Cell-specific signaling biomarker analysis by high parameter cytometry; sample processing, assay set-up, method, analysis

The present invention recognizes that current clinical laboratory testing methods for multiparametric single cell analysis are limited to analysis of intact live cells, and are insufficient for identification of signaling activation profile defining certain cell types, including but not limited to neoplastic and immunologically activated cell subsets. One aspect of the present invention generally relates to marker selection in panels to include proteins routinely assessed in standard FCM, while preferably also incorporating markers for surface receptor proteins within activated signaling cascades. A further aspect of the present invention generally relates to panel design for the following indications in neoplastic and non-neoplastic clinical applications as examples of the technology: (a) identification of CML progenitor cell subsets in the setting of disease recurrence after treatment discontinuation or relapse due to treatment resistance, and (b) characterization of activated basophils to predict the severity of an allergic response. Another aspect of the present invention generally relates to methods to measure levels of surface and IC biomarkers in separate or combined assays for robust characterization of each or select cell compartment, and data analysis based on results from each or all method(s) used for optimal detection of the markers. A further aspect of the present invention generally relates to the identification and profiling of cell subpopulations based on analysis of surface markers including those associated with lineage and maturation of cell types and receptor proteins, and the corresponding IC phosphoproteins including those in activated signaling cascades to predict certain disease states or response to treatment.
Owner:DEEPATH MEDICAL

Advanced lensless light-field imaging systems and methods for enabling a wide range of entirely new applications

Continuing a sequence of lensless light-field imaging camera patents beginning 1999, the present invention adds light-use efficiency, predictive-model design, distance-parameterized interpolation, computational efficiency, arbitrary shaped surface-of-focus, angular diversity / redundancy, distributed image sensing, plasmon surface propagation, and other fundamentally enabling features. Embodiments can be fabricated entirely by printing, transparent / semi-transparent, layered, of arbitrary size / curvature, flexible / bendable, emit light, focus and self-illuminate at zero-separation distance between (planar or curved) sensing and observed surfaces, robust against damage / occulation, implement color sensing without use of filters or diffraction, overlay on provided surfaces, provided color and enhanced multi-wavelength color sensing, wavelength-selective imaging of near-infrared / near-ultraviolet, and comprise many other fundamentally enabling features. Embodiments can be thinner, larger / smaller, more light-use efficient, and higher-performance than recently-popularized coded aperture imaging cameras. Vast ranges of diverse previously-impossible applications are enabled: credit-card cameras / phones, in-body monitoring of healing / disease, advanced biomarker analysis systems, perfect eye-contact video conferencing, seeing fabrics / skin / housings, and manufacturing-monitoring, wear-monitoring, and machine vision capabilities.
Owner:NRI R&D PATENT LICENSING LLC

Novel photocleavable mass-tags for multiplexed mass spectrometric imaging of tissues using biomolecular probes

The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands. Finally, the field of the invention also encompasses multi-omic MSI procedures, where MSI of photocleavable mass-tag probes is combined with other modes of MSI, such as direct label-free MSI of endogenous biomolecules from the biospecimen (e.g., tissue), whereby said biomolecules can be intact or digested (e.g., chemically digested or by enzyme).
Owner:AMBERGEN

Novel photocleavable mass-tags for multiplexed mass spectrometric imaging of tissues using biomolecular probes

The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands. Finally, the field of the invention also encompasses multi-omic MSI procedures, where MSI of photocleavable mass-tag probes is combined with other modes of MSI, such as direct label-free MSI of endogenous biomolecules from the biospecimen (e.g., tissue), whereby said biomolecules can be intact or digested (e.g., chemically digested or by enzyme).
Owner:AMBERGEN

Novel photocleavable mass-tags for multiplexed mass spectrometric imaging of tissues using biomolecular probes

The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection / readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands. Finally, the field of the invention also encompasses multi-omic MSI procedures, where MSI of photocleavable mass-tag probes is combined with other modes of MSI, such as direct label-free MSI of endogenous biomolecules from the biospecimen (e.g., tissue), whereby said biomolecules can be intact or digested (e.g., chemically digested or by enzyme).
Owner:AMBERGEN INC

A paper-based device based on moving valve and molecular imprinting technology and its manufacturing method and application

The invention provides a paper-based device based on mobile valve and molecular imprinting technology and its manufacturing method and application, characterized in that the manufacturing method includes the following steps: pattern design, chip original manufacturing, and electrode construction on the paper base , chip original connection, synthesizing a functionalized molecularly imprinted polymer layer, electrochemical polymerization, and eluting template molecules; the device is used for the analysis and detection of biomarkers in serum samples. The beneficial effect of the present invention is that: the invention provides a paper-based device based on mobile valve and molecular imprinting technology and its production method and application, and provides a brand-new device for clinical detection of biomarkers. Synthesized biomarker molecularly imprinted polymers, formed a set of clinical application methods, created a new strategy for antibody-free biomarker analysis, and realized the entire process from device fabrication to test result output on a paper-based device, which is economical , portable, fast and other advantages.
Owner:YANTAI INST OF COASTAL ZONE RES CHINESE ACAD OF SCI

Photocleavable mass-tags for multiplexed mass spectrometric imaging of tissues using biomolecular probes

PendingUS20220137066A1Avoid artifactsAvoid cross-reaction of the probes with each otherOrganic chemistryMicrobiological testing/measurementRemoval tumorMass spectrometry imaging
The field of this invention relates to immunohistochemistry (IHC) and in situ hybridization (ISH) for the targeted detection and mapping of biomolecules (e.g., proteins and miRNAs) in tissues or cells for example, for research use and for clinical use such by pathologists (e.g., biomarker analyses of a resected tumor or tumor biopsy). In particular, the use of mass spectrometric imaging (MSI) as a mode to detect and map the biomolecules in tissues or cells for example. More specifically, the field of this invention relates to photocleavable mass-tag reagents which are attached to probes such as antibodies and nucleic acids and used to achieve multiplex immunohistochemistry and in situ hybridization, with MSI as the mode of detection/readout. Probe types other than antibodies and nucleic acids are also covered in the field of invention, including but not limited to carbohydrate-binding proteins (e.g., lectins), receptors and ligands. Finally, the field of the invention also encompasses multi-omic MSI procedures, where MSI of photocleavable mass-tag probes is combined with other modes of MSI, such as direct label-free MSI of endogenous biomolecules from the biospecimen (e.g., tissue), whereby said biomolecules can be intact or digested (e.g., chemically digested or by enzyme).
Owner:AMBERGEN

Cell-specific signaling biomarker analysis by high parameter cytometry; sample processing, assay set-up, method, analysis

The present invention recognizes that current clinical laboratory testing methods for multiparametric single cell analysis are limited to analysis of intact live cells, and are insufficient for identification of signaling activation profile defining certain cell types, including but not limited to neoplastic and immunologically activated cell subsets. One aspect of the present invention generally relates to marker selection in panels to include proteins routinely assessed in standard FCM, while preferably also incorporating markers for surface receptor proteins within activated signaling cascades. A further aspect of the present invention generally relates to panel design for the following indications in neoplastic and non-neoplastic clinical applications as examples of the technology: (a) identification of CML progenitor cell subsets in the setting of disease recurrence after treatment discontinuation or relapse due to treatment resistance, and (b) characterization of activated basophils to predict the severity of an allergic response. Another aspect of the present invention generally relates to methods to measure levels of surface and IC biomarkers in separate or combined assays for robust characterization of each or select cell compartment, and data analysis based on results from each or all method(s) used for optimal detection of the markers. A further aspect of the present invention generally relates to the identification and profiling of cell subpopulations based on analysis of surface markers including those associated with lineage and maturation of cell types and receptor proteins, and the corresponding IC phosphoproteins including those in activated signaling cascades to predict certain disease states or response to treatment.
Owner:DEEPATH MEDICAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products