Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

40 results about "Data coherence" patented technology

Data coherence includes uniformity across shared resource data, as well as logical connections and completeness within a single data set and across data sets. For example, a district might upload to its system data on the number of students in military families, and those data are then transferred to the SEA data system.

Unified memory and controller

A memory device has a controller. The controller has a first address bus for receiving a RAM address signals, a first data bus for receiving RAM data signals, and a first control bus for receiving RAM control signals. The controller further has a second address bus for interfacing with a volatile RAM memory, a second data bus for interfacing with the volatile RAM memory, and a second control bus for interfacing with the volatile RAM memory. The controller further has a third address / data bus for interfacing with a non-volatile NAND memory, and a third control bus for interfacing with non-volatile NAND memory. The memory device further having a RAM memory connected to said second address bus, said second data bus, and said second control bus. The memory device further having a non-volatile NAND memory connected to the third address / data bus and to the third control bus. The controller also has a non-volatile bootable memory, and further has means to receive a first address on the first address bus and to map the first address to a second address in the non-volatile NAND memory, with the volatile RAM memory serving as cache for data to or from the second address in the non-volatile NAND memory, and means for maintaining data coherence between the data stored in the volatile RAM memory as cache and the data at the second address in the non-volatile NAND memory.
Owner:GREENLIANT

Memory having improved read capability

In the present invention, a memory, and in particular, a NOR emulating memory comprises a memory controller having a non-volatile memory for storing program code to initiate the operation of the memory controller. The controller has a first bus for receiving address signals from a host device and a second bus for interfacing with a RAM memory, and a third bus for interfacing with a NAND memory. A volatile RAM memory is connected to the second bus. A NAND memory is connected to the third bus. The controller receives commands and a first address from the first bus, and maps the first address to a second address in the NAND memory, and operates the NAND memory in response thereto. The RAM memory serves as cache for data to or from the NAND memory. The controller also maintains data coherence between the data stored in the RAM memory as cache and the data in the NAND memory. The invention further has a first buffer for storing data from the NAND memory in response to a read command to be written to the RAM memory, and a second buffer for storing data from the RAM memory to be written to the NAND memory. In the event of a read operation, if the data from the specified address is in the RAM memory, then the data is read from the RAM memory completing the read operation. In the event of a read operation, and if the data from the specified address is not in the RAM memory, and if there is sufficient space in the RAM memory to store an entire page of data from the NAND memory, then the entire page is read from the NAND memory, stored in the first buffer and then stored in the RAM memory, and from the specified address is read out, completing the read operation. Finally, in the event of a read operation, and if the data from the specified address is not in the RAM memory, and if there is insufficient space in the RAM memory to store an entire page of data from the NAND memory, then an entire page from the RAM memory is first stored in the second buffer, then an entire page is read from the NAND memory, stored in the first buffer, and from the first buffer, stored in the now freed RAM memory and data from the specified address is read out, completing the read operation. The page of data from the second buffer is subsequently stored back into the NAND memory after the completion of the read operation thereby reducing read latency.
Owner:GREENLIANT

Complete polarization synthetic aperture radar target decomposition method for adaptive selection unitary transformation

InactiveCN104698447ASuppressing Scatter Overestimation ProblemsLess freedomRadio wave reradiation/reflectionSynthetic aperture radarOmega
The invention provides a complete polarization synthetic aperture radar target decomposition method for adaptive selection unitary transformation. The method comprises the following steps: (1) performing two unitary transformations for singh for data coherence T matrix of the complete polarization synthetic aperture radar to obtain the matrix, (the formula is as shown in specification); (2) performing other two unitary transformations for the coherence T matrix to obtain the matrix T(omega), wherein the first unitary transformation is used for performing the spiral angle compensation and restraining the volume scattering excessive estimation of model decomposition, the second unitary transformation is used for further restraining the volume scattering excessive estimation and reducing one degree of freedom of the coherence T matrix; (3) comparing with element (the formula is as shown in specification) of the matrix (the formula is as shown in specification) with the element T33(omega) of the matrix T(omega); if (the formula is as shown in specification), and (the formula is as shown in specification), otherwise, T is equal to T(omega); (4) performing three-component model decomposition on coherence T matrix. The two unitary transformations for singh in the step (1) or the two unitary transformations in the step (2) can be selected for the coherence T matrix in a self-adaption mode by the method according to the real situation of the object, and the volume scattering excessive estimation problem of the model decomposition can be effectively restrained.
Owner:NAT SPACE SCI CENT CAS

Improved mixed Freeman/Eigenvalue decomposition method

InactiveCN111125622ASolve problems that are limited and cannot always meet the actual situationSolve the phenomenon of negative powerScene recognitionComplex mathematical operationsData coherenceRegion selection
The invention discloses an improved hybrid Freeman/Eigenvalue decomposition method, and the method comprises the steps: obtaining a complete polarization SAR data coherence matrix, and carrying out the filtering; judging a dominant scattering mechanism at a pixel point in the fully polarimetric SAR data; calculating the surface scattering power, the secondary scattering power and the volume scattering power of the pixel point according to the judgment result of the dominant scattering mechanism; and obtaining a decomposed RGB composite image. According to the invention, the phenomenon of negative power generated by volume scattering power over-estimation, surface scattering and secondary scattering can be effectively solved; different volume scattering models are selected for a natural target area and an artificial target area, and a generalized volume scattering model is introduced for the natural target area, so that the problem that the volume scattering model of the traditional decomposition method is limited and cannot always meet the actual situation is solved. According to the method, a more accurate target scattering characteristic decomposition graph can be obtained, and more accurate classification categories can be obtained in ground object type classification.
Owner:INNER MONGOLIA UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products