Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

55 results about "Unit of length" patented technology

A unit of length refers to any discrete, pre-established length or distance having a constant magnitude which is used as a reference or convention to express linear dimension. The most common units in modern use are U.S. customary units in the United States and metric units elsewhere. British Imperial units are still used for some purposes in the United Kingdom and some other countries. The metric system is sub-divided into SI and non-SI units.

Method and apparatus for transmission line and waveguide testing

InactiveUS20050234666A1Accurately measure the magnitude of each faultCompensation effectTransmitters monitoringResistance/reactance/impedenceEngineeringPeak value
A multi-port junction is used in combination with an Inverse Fourier Transform to detect distance to fault in an RF transmission line or waveguide without the use of heterodyne down-conversion circuits. To provide an ultra-wide bandwidth frequency domain reflectometer the output ports of the multi-port junction are used to calculate distance to fault and return loss. The Inverse Fourier Transform algorithm is modified to take into account both phase shift per unit length of the transmission line and attenuation per unit of length in the transmission line, with the output of the modified Inverse Fourier Transform being applied to a module that subtracts out the effect of previous faults by solving for the distances ahead of time before knowing amplitudes and for solving for amplitude at each prior fault starting with the first fault. The output of this module is then used thresholded to remove the effects of noise, secondary reflections and inconsequential peaks. The result is a time domain waveform in which peak positions indicate the distance to real faults and in which return loss or percent reflection is calculated for each of the faults. Moreover, internal calibration loads and specialized processing are used to effortlessly calibrate the reflectometer in the field.
Owner:BAE SYST INFORMATION & ELECTRONICS SYST INTERGRATION INC

Method and apparatus for transmission line and waveguide testing

InactiveUS20050203711A1Accurately measure the magnitude of each faultCompensation effectSpectral/fourier analysisSystems using filtering and bypassingPeak valueMulti port
A multi-port junction is used in combination with an Inverse Fourier Transform to detect distance to fault in an RF transmission line or waveguide without the use of heterodyne down-conversion circuits. To provide an ultra-wide bandwidth frequency domain reflectometer the output ports of the multi-port junction are used to calculate distance to fault and return loss. The Inverse Fourier Transform algorithm is modified to take into account both phase shift per unit length of the transmission line and attenuation per unit of length in the transmission line, with the output of the modified Inverse Fourier Transform being applied to a module that subtracts out the effect of previous faults by solving for the distances ahead of time before knowing amplitudes and for solving for amplitude at each prior fault starting with the first fault. The output of this module is then used thresholded to remove the effects of noise, secondary reflections and inconsequential peaks. The result is a time domain waveform in which peak positions indicate the distance to real faults and in which return loss or percent reflection is calculated for each of the faults. Moreover, internal calibration loads and specialized processing are used to effortlessly calibrate the reflectometer in the field.
Owner:BAE SYST INFORMATION & ELECTRONICS SYST INTERGRATION INC

Method and apparatus for transmission line and waveguide testing

InactiveUS7061251B2Accurately measure the magnitude of each faultCompensation effectTransmitters monitoringResistance/reactance/impedenceEngineeringPeak value
A multi-port junction is used in combination with an Inverse Fourier Transform to detect distance to fault in an RF transmission line or waveguide without the use of heterodyne down-conversion circuits. To provide an ultra-wide bandwidth frequency domain reflectometer the output ports of the multi-port junction are used to calculate distance to fault and return loss. The Inverse Fourier Transform algorithm is modified to take into account both phase shift per unit length of the transmission line and attenuation per unit of length in the transmission line, with the output of the modified Inverse Fourier Transform being applied to a module that subtracts out the effect of previous faults by solving for the distances ahead of time before knowing amplitudes and for solving for amplitude at each prior fault starting with the first fault. The output of this module is then used thresholded to remove the effects of noise, secondary reflections and inconsequential peaks. The result is a time domain waveform in which peak positions indicate the distance to real faults and in which return loss or percent reflection is calculated for each of the faults. Moreover, internal calibration loads and specialized processing are used to effortlessly calibrate the reflectometer in the field.
Owner:BAE SYST INFORMATION & ELECTRONICS SYST INTERGRATION INC

Method and device for inspecting a traveling wire cable

In a first embodiment, a picture is taken of the traveling wire cable in a stationary position at intervals that are equal to the ratio produced from the lay length or a multiple of the lay length and the travel speed of the wire cable, at least op one lay length or the above-mentioned multiple of the lay length, and the successive images are compared on at least one lay length or the above-mentioned multiple of the lay length and are monitored for changes in the image which are indicative of damages. In a second embodiment, the wire cable is instead of taking pictures exposed to flashes and the exposed image is detected on at least one lay length or the above-mentioned multiple of the lay length and monitored for changes in the image. Preferably, the respective repetition of the same outer stranded wire of the traveling wire cable is detected in the same location and every repetition or every other repetition or every third repetition is used for triggering the taking of a picture or for triggering the flash. In a third embodiment, a picture is taken of a large portion of the wire cable using a specialized camera and the image is split up into recurring units of length that correspond to the size of a lay length or a multiple of the lay length and the successive units of length are compared and inspected for changes in the image.
Owner:CASAR DRAHTSEILWERK SAAR GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products