Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

489results about "Acceleration measurement using gyroscopes" patented technology

Method of Fabricating High Aspect Ratio Transducer Using Metal Compression Bonding

A method and apparatus are described for fabricating a high aspect ratio MEMS device by using metal thermocompression bonding to assemble a reference wafer (100), a bulk MEMS active wafer (200), and a cap wafer (300) to provide a proof mass (200d) formed from the active wafer with bottom and top capacitive sensing electrodes (115, 315) which are hermetically sealed from the ambient environment by sealing ring structures (112 / 202 / 200a / 212 / 312 and 116 / 206 / 200e / 216 / 316).
Owner:FREESCALE SEMICON INC

Microelectromechanical sensor with improved mechanical decoupling of sensing and driving modes

A driving mass of an integrated microelectromechanical structure is moved with a rotary motion about an axis of rotation, and a sensing mass is connected to the driving mass via elastic supporting elements so as to perform a detection movement in the presence of an external stress. The driving mass is anchored to a first anchorage arranged along the axis of rotation by first elastic anchorage elements. The driving mass is also coupled to a pair of further anchorages positioned externally thereof and coupled to opposite sides with respect to the first anchorage by further elastic anchorage elements; the elastic supporting elements and the first and further elastic anchorage elements render the driving mass fixed to the first sensing mass in the rotary motion, and substantially decoupled from the sensing mass in the detection movement, the detection movement being a rotation about an axis lying in a plane.
Owner:STMICROELECTRONICS SRL

Method and Apparatus for Body Impact Protection

This invention relates to active protective garments which are inconspicuously worn by an individual and which activate upon certain conditions being met. Activation causes inflation of regions of the active protective garment to provide padding and impact cushioning for the wearer.The invention is an active protective garment such as pair of shorts or pants, a jacket, a vest, underwear, and the like. The garments comprise multiple layers of material that constrain pockets or regions that are inflatable by a source of compressed gas or foam. The garments also comprise sensors to detect ballistic parameters such as acceleration, distance, relative acceleration, and rotation. The sensor information is used to determine whether activation is required. Detection and activation are accomplished in a very short time period in order to offer maximal protection for the individual wearing the garment. The system comprises a computer or logic controller that monitors the sensor data in real time and coordinates the information from all sensors. The system calculates velocity, distance, and rotational velocity. A rule-based system is used to detect a complex fall in progress and discriminate said fall in progress from the events of every day life. The pockets or inflatable regions of the garment protect the individual against falls and other impacts that may cause bone fracture or organ damage.
Owner:ACTIVE PROTECTIVE TECH

System and method for observing the swimming activity of a person

A system for observing a swimming activity of a person includes a waterproof housing (BET) having a motion sensor (MS), and is furnished with fixing means (BEL) for securely fastening the housing (BET) to a part of the body of a user. The system has analysis means (AN) for analyzing the signals transmitted by the motion sensor (MS) to at least one measurement axis and which are adapted for determining the type of swimming of the user as a function of time by using a hidden Markov model with N states corresponding respectively to N types of swimming.
Owner:COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES +1

Absolute acceleration sensor for use within moving vehicles

A method of and system for detecting absolute acceleration along various axes relative to a desired movement vector while moving relative to a gravity source includes steps of determining a vertical acceleration, perpendicular to the desired movement vector and substantially anti-parallel to a gravitational acceleration due to the gravity source; determining a longitudinal acceleration, parallel to the desired movement vector and to output at vertical acceleration signal and a longitudinal acceleration signal; determining an inclination of the desired movement vector relative to the gravitational acceleration; and processing the vertical acceleration signal, the longitudinal acceleration signal, and the inclination signal to produce an absolute vertical acceleration signal and an absolute longitudinal acceleration signal.
Owner:VISION WORKS IP CORP

Micro-machined multi-sensor providing 1-axis of acceleration sensing and 2-axes of angular rate sensing

A micro-machined multi-sensor that provides 1-axis of acceleration sensing and 2-axes of angular rate sensing. The multi-sensor includes a plurality of accelerometers, each including a mass anchored to and suspended over a substrate by a plurality of flexures. Each accelerometer further includes acceleration sense electrode structures disposed along lateral and longitudinal axes of the respective mass. The multi-sensor includes a fork member coupling the masses to allow relative antiphase movement, and to resist in phase movement, of the masses, and a drive electrode structure for rotationally vibrating the masses in antiphase. The multi-sensor provides electrically independent acceleration sense signals along the lateral and longitudinal axes of the respective masses, which are added and / or subtracted to obtain 1-axis of acceleration sensing and 2-axes of angular rate sensing.
Owner:ANALOG DEVICES INC

Apparatus, system and method for risk indicator calculation for driving behaviour and for reconstructing a vehicle trajectory

A first aspect relates to an apparatus, system and method for calculating a driving behaviour risk indicator for a driver of a vehicle. Said aspect involves obtaining a count of events occurring in each of a plurality of predetermined categories based on inputs from an inertial unit mounted on the vehicle, the inertial unit including a 3D inertial sensor with 3D gyroscope functionality, each event being indicative of at least one of dangerous and aggressive driving; and calculating a driving behaviour risk indicator based on the number of events in each category. According to a second aspect, an apparatus and method for reconstructing a vehicle trajectory is provided. Said aspect includes updating a sensor error model.
Owner:PULSE FUNCTION F6

Disc resonator gyroscopes

Embodiments of the present invention are directed to apparatuses and methods of making a micromachined resonator gyroscope, e.g. a disc resonator gyro (DRG), including one or more of the following novel features. Embodiments of the invention may comprise a triple-wafer stack gyroscope with an all fused quartz (or all silicon) construction for an electrical baseplate, resonator and vacuum cap. This can yield superior thermal stability over prior art designs. A typical resonator embodiment may include a centrally anchored disc with high aspect-ratio in-plane electrostatic drive and sense electrodes to create large capacitance. A silicon sacrificial layer may be employed for attaching a quartz resonator wafer to a quartz handle wafer for high aspect-ratio etching. In addition, embodiments of the invention may comprise a low thermal stress, wafer-level vacuum packaged gyroscope with on-chip getter. An ultra-thin conductive layer deposited on the quartz resonator may also be utilized for high Q.
Owner:THE BOEING CO

Angular velocity sensor

An angular velocity sensor for detecting an angular velocity component includes an oscillator having mass, a sensor casing for accommodating the oscillator therewithin, a flexible member for connecting the oscillator to the sensor casing so that the oscillator can be moved with respect to the sensor casing, and capacitance elements including a first electrode provided on a surface of the oscillator and a second electrode provided on a surface of a fixed member fixed to the sensor casing.
Owner:WAKO CO LTD

Robust six degree-of-freedom micromachined gyroscope with anti-phase drive scheme and method of operation of the same

A method of operating an anti-phase six degree-of-freedom tuning fork gyroscope system comprises the steps of driving a first three degree-of-freedom gyroscope subsystem, and driving a second three degree-of freedom gyroscope subsystem in an anti-phase mode with the first gyroscope subsystem at an anti-phase resonant frequency. Acceleration or an angular rate of motion is sensed by the first and second three degree-of-freedom gyroscope subsystems operating in a flat frequency response range where the anti-phase resonant frequency is designed. Response gain and phase are stable and environmental and fabrication perturbations are avoided by such operation. A anti-phase six degree-of-freedom tuning fork gyroscope system which operates as described is also characterized.
Owner:RGT UNIV OF CALIFORNIA

Cloverleaf microgyroscope with electrostatic alignment and tuning

A micro-gyroscope (10) having closed loop output operation by a control voltage (Vty), that is demodulated by a drive axis (x-axis) signal Vthx of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis) Vthy˜0. Closed loop drive axis torque, Vtx maintains a constant drive axis amplitude signal, Vthx. The present invention provides independent alignment and tuning of the micro-gyroscope by using separate electrodes and electrostatic bias voltages to adjust alignment and tuning. A quadrature amplitude signal, or cross-axis transfer function peak amplitude is used to detect misalignment that is corrected to zero by an electrostatic bias voltage adjustment. The cross-axis transfer function is either Vthy / Vty or Vtnx / Vtx. A quadrature signal noise level, or difference in natural frequencies estimated from measurements of the transfer functions is used to detect residual mistuning, that is corrected to zero by a second electrostatic bias voltage adjustment.
Owner:CALIFORNIA INST OF TECH +1

High sensitivity microelectromechanical sensor with rotary driving motion

A driving mass of an integrated microelectromechanical structure is moved with a rotary motion about an axis of rotation, and a sensing mass is connected to the driving mass via elastic supporting elements so as to perform a detection movement in the presence of an external stress. The driving mass is anchored to an anchorage arranged along the axis of rotation by elastic anchorage elements. An opening is provided within the driving mass and the sensing mass is arranged within the opening. The elastic supporting and anchorage elements render the sensing mass fixed to the driving mass in the rotary motion, and substantially decoupled from the driving mass in the detection movement. The detection movement is a rotation about an axis lying in a plane. The sensing mass has, in plan view, a non-rectangular shape; in particular, the sensing mass has a radial geometry and, in plan view, the overall shape of a radial annulus sector.
Owner:STMICROELECTRONICS SRL

Robust micromachined gyroscopes with two degrees of freedom sense-mode oscillator

A three-degrees of freedom (DOF) MEMS inertial micromachined gyroscope with nonresonant actuation with a drive direction, sense direction and a direction perpendicular to the drive and sense directions comprises a planar substrate, a 2-DOF sense-mode oscillator coupled to the substrate operated at a flattened wide-bandwidth frequency region, and a 1-DOF drive mode oscillator coupled operated at resonance in the flattened wide-bandwidth frequency region to achieve large drive-mode amplitudes.
Owner:RGT UNIV OF CALIFORNIA

Semiconductor type yaw rate sensor

A semiconductor type yaw rate sensor has a substrate, a beam structure formed from a semiconductor material and having at least one anchor portion disposed on the substrate, a weighted portion located above the substrate a predetermined gap therefrom, and a beam portion which extends from the anchor portion and supports the weighted portion. A movable electrode is formed onto the weighted portion, and a fixed electrode is formed on the substrate in such a manner that the fixed electrode faces the movable electrode. When a drive voltage is applied between the movable electrode and the fixed electrode, the beam structure is forcibly caused to vibrate in a direction that is horizontal relative to a substrate surface plane. In this yaw rate sensor, a strain gauge to monitor forced vibration of the beam structure is formed in the beam portion. As a result, the forced vibration of the beam structure can be monitored with a simple structure.
Owner:DENSO CORP

Configurable inertial navigation system with dual extended kalman filter modes

ActiveUS8065074B1Navigation state may be computed more accurately and robustlyAcceleration measurement using interia forcesPosition fixationKaiman filterNavigation system
A system and method for more accurately and robustly estimating navigation state of a vehicle by adaptively processing signals from an inertial sensor assembly and other sensors. A navigation system receives signals from two or more sensors to evaluate and correct the attitude estimated by an Extended Kalman Filter (EKF). The navigation system selects sensor signals from the other sensor assemblies and processes the selected sensor signals in conjunction with estimates from the inertial navigation module to obtain more accurate estimates of the attitude. The parameters and conditions for using certain sensor signals may be adjusted based on the characteristics and configuration of the vehicle.
Owner:ACEINNA TRANSDUCER SYST CO LTD

Miniaturized smart self-calibration electronic pointing method and system

An innovative configuration of Miniaturized Smart Self-calibration EPD for mortar applications, as the azimuth / heading and elevation measurement device. This innovative EPD configuration uses only two FOGs or DTG and accelerometers and it is self-contained. This leads to a new EPD implementation that produces a small and light device with lower cost and adequate accuracy for the small dismounted mortar applications.
Owner:AMERICAN GNC

Micro yaw rate sensors

Yaw rate sensors are provided, the use of which permits quantitative measurement of yaw rate. The yaw rate sensor comprises at least a base, a first suspension and a second suspension with a proof mass supported between the two suspensions, which together form a resonator. The first suspension has a pair of thin-wire driving electrodes double side patterned on the surfaces. When a driving voltage is applied to the driving electrodes, it imposes an electric field to piezoelectrically induce a driving resonance. When the sensor is rotated around its sensing axis, the resonator will be forced to generate a sensing resonance out of the driving resonance plane to compensate the change in the linear momentum which must be conserved. The piezoelectric charge signal generated by the sensing resonance on the sensing electrodes which are double side patterned on the surfaces of the second suspension is used to detect the yaw rate. Specifically, the amplitude of the sensing resonance is in proportion to the yaw rate. The structure of the yaw rate sensors of this invention is suitable for mass production by lithographic micromachining techniques at low cost.
Owner:LIN GANG

Absolute acceleration sensor for use within moving vehicles

A communication system for a vehicle includes a vehicle speed sensor configured to emit a periodic function with a parameter correlated to the speed of the vehicle, an acceleration monitoring system, a braking system engagement detector to detect a braking status of the vehicle, an alerting device capable of signaling other drivers of a deceleration condition of the vehicle, and a control device. The acceleration monitoring system is configured to compute the acceleration of the vehicle from variations in the parameter of the periodic function of the vehicle speed sensor and to output a deceleration status of the vehicle. The control device is coupled to the acceleration monitoring system, the braking system engagement detector, and the alerting device, wherein the acceleration monitoring system sends signals to the control device and the control device operates the alerting device in a manner dependent on the deceleration status of the vehicle.
Owner:VISION WORKS IP CORP

Micro-electromechanical system inertial sensor

A micro-machined MEMS resonator gyroscope and accelerometer is fabricated from an epilayer semiconductor wafer to incorporate a substantially planar, H-shaped resonator mass suspended from a support plate by two opposed elongated springs that couple to the relatively short crossbar member of the H. The masses are harmonically oscillated relative to the support plate and a baseplate portion, and two orthogonal modes of the structure corresponding to the two nearly degenerate fundamental torsional modes thereof are used for sensing angular rate about one axis, and linear acceleration along two axes, of the sensor. The H-shaped mass advantageously incorporates a relatively high length-to-width aspect ratio, and in one embodiment, the springs may advantageously incorporate either a square cross-section, such that the structure can be tuned to substantially match the fundamental frequencies of the two resonance modes of the structure by removing, e.g., by an etching process, a small amount of material from the upper surfaces of the springs.
Owner:NANCHANG O FILM OPTICAL ELECTRONICS TECH CO LTD

Planar 3-axis inertial measurement unit

The present invention relates to a z-axial solid-state gyroscope. Its main configuration is manufactured with a conductive material and includes two sets of a proof mass and two driver bodies suspended between two plates by an elastic beam assembly. Both surfaces of the driver bodies and the proof masses respectively include a number of grooves respectively perpendicular to a first axis and a second axis. The surfaces of the driver bodies and the proof masses and the corresponding stripe electrodes of the plates thereof are respectively formed a driving capacitors and a sensing capacitors. The driving capacitor drives the proof masses to vibrate in the opposite direction along the first axis. If a z-axial angular velocity input, a Coriolis force makes the two masses vibrate in the opposite direction along the second axis. If a first axial acceleration input, a specific force makes the two masses move in the same direction along the first axis. If a second axial acceleration input, a specific force makes the two masses move in the same direction along the second axis. Both inertial forces make the sensing capacitances change. One z-axial solid-state gyroscopes and two in-plane axial gyroscopes can be designed on a single chip to form a complete three-axis inertial measurement unit.
Owner:MIN OF NAT DEFENSE

MEMS gyroscope having mass vibrating vertically on substrate

X type MEMS gyroscope has a first mass vertically vibrating on a substrate and a second mass horizontally vibrating on the substrate. A driving electrode is disposed on the same surface with the first mass. When the first mass vertically vibrates, the second mass vibrates vertically together with the first mass. When angular velocity that is at a right angle to a movement direction of the first mass and the second mass is applied while the first mass is vertically vibrating, the second mass moves as Coriolis force is added to the second mass in a horizontal direction, and a sensing electrode measures displacement of the second mass in the horizontal direction. All moving electrodes and stationary electrodes are disposed on the same surface, and all elements are manufactured by using one mask. Therefore, adhesion between the moving and stationary electrodes is prevented and the manufacturing process is simplified.
Owner:SAMSUNG ELECTRONICS CO LTD

Uniaxle integrated inertia measurement device based on single mass-block

The present invention which relates to the micro-mechanism electric technology provides a single-shaft and integrated device for measuring the inertia based on the single quality block. And the present solves the problems of the prior single-shaft and integrated assembly for measuring the inertia that the structure is complex, the volume and quality are big, etc. The single-shaft and integrated device for measuring the inertia includes a quality block and a glass cover bottom. The quality block which is hang on the upper of the glass cover bottom through a supporting beam includes a quality chip and four supporting bodies that are fixed with the four sides of the quality chip through the elastic beam. A moveable comb for detecting is fixed on the external of the supporting body relative to the Y direction and a moveable comb for driving is fixed on the external of the supporting body relative to the X direction. A fixed comb for detecting and a fixed comb for driving are fixed on the glass cover bottom, and electrodes for forming the capacitance are fixed on the lower end surface and the glass cover bottom of the quality chip. The device in the present invention has advantages of a reasonable structure, an easy processing, a high reliability, a small volume, a strong ability of resisting the interference, a high precision, a high precision of measuring the paralleling and orthogonality of the vectors, etc.
Owner:ZHONGBEI UNIV

Inertia sensor and inertia detector device

A detector device includes a drive circuit for outputting a drive pulse signal for displacing the variable block, a detection pulse signal applying unit by which the variable capacitance elements and the fixed capacitance element whose one end is connected in common are respectively applied, at their other ends, with detection pulse signals with a plurality of phases each having a predetermined phase difference at a timing synchronized with the drive pulse signal, and an inertia detection unit for detecting a difference in capacitance value between the variable capacitance elements to which the detection pulse signal having the phase difference is applied, or between the fixed capacitance element and the variable capacitance element, and detecting the applied inertial force based on the difference.
Owner:SONY CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products