Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1890results about "Textile decoration" patented technology

Fabric or garment with integrated flexible information infrastructure

A fabric, in the form of a woven or knitted fabric or garment, including a flexible information infrastructure integrated within the fabric for collecting, processing, transmitting and receiving information concerning-but not limited to-a wearer of the fabric. The fabric allows a new way to customize information processing devices to "fit" the wearer by selecting and plugging in (or removing) chips/sensors from the fabric thus creating a wearable, mobile information infrastructure that can operate in a stand-alone or networked mode. The fabric can be provided with sensors for monitoring physical aspects of the wearer, for example body vital signs, such as heart rate, EKG, pulse, respiration rate, temperature, voice, and allergic reaction, as well as penetration of the fabric. The fabric consists of a base fabric ("comfort component"), and an information infrastructure component which can consist of a penetration detection component, or an electrical conductive component, or both. The preferred penetration detection component is a sheathed optical fiber. The information infrastructure component can include, in addition to an electrically conductive textile yarn, a sensor or a connector for a sensor. A process is provided for making an electrical interconnection between intersecting electrically conductive yarns. Furthermore, a process is established for sheathing the plastic optical fiber and protecting it.
Owner:GEORGIA TECH RES CORP

Three-dimensional shape measurement apparatus and method for eliminating2pi ambiguity of moire principle and omitting phase shifting means

A three-dimensional (3-D) shape measurement method using a Moire measurement principle and a Stereo vision measurement principle is provided. The method comprises; a first step to detect candidate points and 3D positions of the candidate points in world coordinates which are identical results from typical Moiré technique by using a pattern projector, which adjusts a pitch of a fringe pattern and projects the fringe pattern to a measurement object, and a first camera, which detects a modulated fringe pattern caused by shape of shape of the object, by means of obtaining candidate points by comparing a reference fringe pattern to the modulated fringe pattern and calculating 3D positions at an arbitrary point on an image captured from the first camera; a second step to determine a final matching point among the candidate points detected from the first step by using the Stereo vision technique with the first and the second cameras, by means of projecting the 3D positions of the candidate points to an image plane of the second camera based on a camera matrix of the second camera, comparing intensity value of a projected point in the image plane of the second camera to intensity value of given point in the image plane of the first camera, and judging whether the candidate point is matched with an arbitrary point by using the stereo vision criteria; and a third step to measure the depth value of the arbitrary point by using the resultant value of the final matching point, which was determined at the second step. Therefore, the error of 2π ambiguity of the typical Moire principle is eliminated, and thus 3-D shape information can be more rapidly and accurately measured.
Owner:KOREA ADVANCED INST OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products