Provided are a beam combining and
hybrid beam
selection method that can improve
digital broadcasting reception performance by combining more than two beam output signals (beam combination type) instead of simply selecting one of beam output signals (beam selection type), or even selecting an optimal method between the beam selection type and the beam combination type, and a
digital broadcasting receiving apparatus using the same. The beam selecting method includes: a) calculating SMNRs (mainpath
signal to multipath
signal and
noise ratios) with respect to a plurality of beam output signals, formed according to directions from a plurality of antenna output signals whose phases are shifted depending on arrangement positions of array antennas, by using corresponding channel impulse responses; b) selecting a first predetermined number of beam output signals according to magnitudes of the SMNRs by comparing the calculated SMNRs with respect to the respective beam output signals; c) calculating a
delay time between mainpath signals of the selected beam output signals, and generating a combined beam output
signal by combining the two beam output signals by adjusting the calculated
delay time; d) when the SMNR of the combined beam output signal is less than the maximal SMNR of the selected beam output signals, calculating an SDMR (mainpath signal to dominant multipath signal ratio) with respect to the respective beam output signals, and selecting a beam output signal having the greatest SDMR; and e) calculating an SMNR of the combined beam output signal using
channel impulse response of the combined beam output signal, and comparing the calculated SMNR with a maximal value among the SMNRs of the selected beam output signals; and f) when the SMNR of the combined beam output signal is greater than or equal to the maximal SMNR of the selected output signals, selecting the combined beam output signal generated in step c).