Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

93results about How to "Increase display ratio" patented technology

Touch sensor integrated display device

A touch sensor integrated display device is provided comprising gate lines and data lines formed on a substrate to be intersected with each other, a plurality of pixel electrodes formed at intersections between the gate lines and the data lines, and a common electrode formed to overlap the plurality of pixel electrodes through an insulating film disposed between the common electrode and the plurality of pixel electrodes, wherein the common electrode includes at least two touch electrodes, each of which is connected to at least one of signal lines arranged in one of a first direction and a second direction crossing the first direction.
Owner:LG DISPLAY CO LTD

Deposition mask, method for manufacturing display unit using it, and display unit

ActiveUS20050001546A1Reduced film thickness distributionWiring resistance differenceDischarge tube luminescnet screensElectroluminescent light sourcesOrganic light emitting deviceOrganic layer
A deposition mask and a display unit and method of manufacturing same are provided. A red continuous organic layer, a green continuous organic layer, and a blue continuous organic layer are provided over two or more lines of a matrix configuration of organic light emitting devices in common. A film thickness distribution in the extensional direction of the red, green and blue continuous organic layer is dissolved, and an aperture ratio can be improved by just that much.
Owner:SONY CORP

Electro-optical device and electronic apparatus

An electro-optical device, which has a display area and a plurality of sensing areas for detecting capacitance in the display area, includes a black matrix that is provided in the vicinities of display pixels in the display area, pixel electrodes that individually form the display pixels, a common electrode, a liquid crystal layer that is interposed between the pixel electrodes and the common electrode, a plurality of pixel circuits that individually drive the pixel electrodes, a capacitance detection element that is provided in a corresponding one of the sensing areas to convert a change in thickness of the liquid crystal layer caused by external pressure into a change in capacitance, and a sensing circuit that outputs a sensing signal on the basis of the change in capacitance obtained by the capacitance detection element. The capacitance detection element overlaps the black matrix in plan view.
Owner:JAPAN DISPLAY WEST

Touch sensor integrated display device

A touch sensor integrated display device is provided comprising gate lines and data lines formed on a substrate to be intersected with each other, a plurality of pixel electrodes formed at intersections between the gate lines and the data lines, and a common electrode formed to overlap the plurality of pixel electrodes through an insulating film disposed between the common electrode and the plurality of pixel electrodes, wherein the common electrode includes at least two touch electrodes, each of which is connected to at least one of signal lines arranged in one of a first direction and a second direction crossing the first direction.
Owner:LG DISPLAY CO LTD

Structure of pixel circuit for display and driving method thereof

A pixel circuit including a first transistor, a coupling capacitor, a second transistor, and a luminescent element is provided. The first transistor is used as a switch. The coupling capacitor stores a coupling voltage and transmits the coupling voltage to the gate of the second transistor for compensating a drift of the threshold voltage of the second transistor. The second transistor provides a driving current for driving the luminescent element to emit light.
Owner:AU OPTRONICS CORP

Display panel and method of fabricating the same

A display panel and a fabrication method thereof are provided. The display panel includes a substrate, a plurality of thin film transistor devices, color filters having different colors and a plurality of auxiliary color filter patterns. The thin film transistor devices and the color filters are disposed in corresponding pixel regions of the substrate, and each color filter layer has an opening uncovering one corresponding thin film transistor device. The auxiliary color filter patterns are respectively disposed in the openings of the color filter layers, and the auxiliary color filter patterns have the same light transmission spectrum.
Owner:AU OPTRONICS CORP

Semiconductor device and manufacturing method thereof

A conductive film to be a gate electrode, a first insulating film to be a gate insulating film, a semiconductor film in which a channel region is formed, and a second insulating film to be a channel protective film are successively formed. With the use of a resist mask formed by performing light exposure with the use of a photomask which is a multi-tone mask and development, i) in a region without the resist mask, the second insulating film, the semiconductor film, the first insulating film, and the conductive film are successively etched, ii) the resist mask is made to recede by ashing or the like and only the region of the resist mask with small thickness is removed, so that part of the second insulating film is exposed, and iii) the exposed part of the second insulating film is etched, so that a pair of opening portions is formed.
Owner:SEMICON ENERGY LAB CO LTD

Display substrate, method of manufacturing the same and display apparatus having the same

A display substrate includes a plurality of pixels. Each of the pixels includes a switching element, a storage capacitor, a storage line and a pixel electrode. The switching element includes a polycrystalline silicon layer having a channel portion and a doped portion, a gate electrode, a source electrode and a drain electrode. The gate electrode is formed on the channel portion and has a lower layer and an upper layer. The source electrode and the drain electrode make contact with the doped portion. The storage capacitor includes a first storage electrode formed from a layer substantially same as the polycrystalline silicon layer and a second storage electrode formed from a layer substantially same as the lower layer of the gate electrode.
Owner:SAMSUNG DISPLAY CO LTD

Liquid crystal display device and manufacturing method for the same, and liquid crystal alignment regulation force decision method

A liquid crystal display device includes a TFT substrate and a counter substrate on each of which an alignment film is formed and a liquid crystal interposed and held between the alignment films of the TFT and counter substrate, wherein the alignment film is made of a material capable of applying liquid crystal alignment regulation force by polarized light irradiation, a convex structure is formed on the TFT substrate or the counter substrate, and the alignment film is applied the liquid crystal alignment regulation force to a surface of a region ranging from the periphery of the convex structure to the vicinity of an inclined part of the convex structure and is not applied the liquid crystal alignment regulation force to a surface of the inclined part of the convex structure.
Owner:JAPAN DISPLAY INC

High screen ratio display device with fingerprint identification

A high screen ratio display device with fingerprint identification includes a lower substrate, an upper substrate, and a cover glass. The lower substrate has a thin film transistor array formed with a plurality of thin film transistors and corresponding capacitors to provide an active area. The upper substrate is disposed on one side of the TFT array, and has an optical film layer. The cover glass is disposed on one side of the upper substrate, and has an opening to accommodate a fingerprint identification module. The opening at least partially overlaps the active area, and a space is defined between the opening of the cover glass and the thin film transistor array to accommodate a portion of the fingerprint identification module.
Owner:FOCALTECH ELECTRONICS

Display substrate and display apparatus having the same

A display substrate includes a gate line, a gate insulating layer, a data line, a thin-film transistor (TFT), a storage line, a passivation layer, a color filter layer, a pixel electrode, a first light-blocking layer and a second light-blocking layer. The storage line includes the same material as the gate line. The passivation layer covers the data line. The color filter layer is formed on the passivation layer. The pixel electrode is formed on the color filter layer in each pixel. The first light-blocking layer is formed between adjacent pixel electrodes, and includes the same material as the gate line. The second light-blocking layer is formed between the first light-blocking layer, and includes the same material as the data line. Therefore, an aperture ratio may be increased.
Owner:SAMSUNG DISPLAY CO LTD

Semiconductor device and manufacturing method thereof

A conductive film to be a gate electrode, a first insulating film to be a gate insulating film, a semiconductor film in which a channel region is formed, and a second insulating film to be a channel protective film are successively formed. With the use of a resist mask formed by performing light exposure with the use of a photomask which is a multi-tone mask and development, i) in a region without the resist mask, the second insulating film, the semiconductor film, the first insulating film, and the conductive film are successively etched, ii) the resist mask is made to recede by ashing or the like and only the region of the resist mask with small thickness is removed, so that part of the second insulating film is exposed, and iii) the exposed part of the second insulating film is etched, so that a pair of opening portions is formed.
Owner:SEMICON ENERGY LAB CO LTD

Display panel and method of manufacturing the same

A display panel includes a base substrate, on which a pixel area and a peripheral area are defined, a semiconductor pattern disposed on the base substrate, a display element disposed in the pixel area of the base substrate and a first thin film transistor configured to control the display element, where the first thin film transistor includes an input electrode a first portion of the semiconductor pattern and an output electrode disposed on a second portion of the semiconductor pattern, a third portion of the semiconductor pattern between the first portion and the second portion; and a control electrode disposed on the third portion and insulated from the third portion.
Owner:SAMSUNG DISPLAY CO LTD

Display substrate, method of manufacturing the display substrate and display apparatus having the display substrate

A display substrate includes a base substrate, a first line, a second line, a bridge line, a thin-film transistor (TFT), a storage line, and a pixel electrode. The first line extends in a first direction on the base substrate. The second line extends in a second direction on the base substrate and is divided into two portions with respect to the first line. The bridge line makes contact with the two portions of the second line in first and second bridge contact regions. The TFT includes a source electrode making contact with one of the first and second lines in a data contact region. The storage line is formed on the one of the first and second lines. The pixel electrode is formed on the storage line and is electrically connected to the TFT. The display substrate reduces formation of parasitic capacitance between pixel electrode and data line.
Owner:SAMSUNG DISPLAY CO LTD

Array substrate and display device

The invention provides an array substrate and a display device. The array substrate comprises a plurality of gate lines and a plurality of data lines which are arranged crosswise and are insulated from each other, and a plurality of pixel units, wherein each pixel unit comprises a control section and a display section, each of which is symmetrically distributed with the central line of a corresponding gate line as a symmetry axis, the control section is located at a cross-point of the gate line and the data line, and is at least partially overlapped with the gate line and the data line, the display section is located at a region defined by the gate line and the data line; and the control section is connected to the display section to control the display section for display. In the present invention, the aperture ratio of the array substrate is increased.
Owner:BOE TECH GRP CO LTD

Method for fabricating photoresist pattern, color filter and display device

The disclosure provides in some embodiments a method for fabricating a photoresist pattern, a color filter and a method for fabricating the same, and a display device. The method for fabricating a photoresist pattern includes coating negative photoresist on a base substrate to form a first photoresist layer, coating positive photoresist on the first photoresist layer to form a second photoresist layer, conducting a first exposure process on first regions of the second photoresist layer, conducting a first developing process to remove the positive photoresist within the first regions of the second photoresist layer and the negative photoresist within second regions of the first photoresist layer, so as to obtain a first photoresist pattern and a second photoresist pattern, conducting a second exposure process on the first photoresist pattern and the second photoresist pattern, and conducting a second developing process to remove the first photoresist pattern.
Owner:CHENGDU BOE OPTOELECTRONICS TECH CO LTD +1

Driving circuit of light emitting element

A driving circuit for a light emitting element, electrically connected to a data line and a scan line and powered by a bias voltage so as to drive the light emitting element, comprising: a first transistor, further comprising: a first gate, electrically connected to the scan line; and a first drain / source, having a first node electrically connected to the data line and a second node; and a second transistor, further comprising: a second gate, electrically connected to the second node of the first drain / source; and a second drain / source, having a first node electrically connected to the bias voltage, and a second node electrically connected to the light emitting element; wherein, an insulation layer and a layer of non-volatile material is formed successively between the semiconductor layer and the second gate of the second transistor.
Owner:IND TECH RES INST

Increasing LCD aperture ratios

A liquid crystal display includes an insulating substrate, a semiconductor, a gate insulating layer, a gate line, an interlayer insulating layer, a data line, a drain electrode, a passivation layer, and a pixel electrode. The semiconductor is formed on the insulating substrate and includes source, drain, and channel regions. The gate line is formed on the gate insulating layer over the semiconductor, and overlaps the channel region thereof. The data line is formed on the interlayer insulating layer and has a source electrode electrically connected to the source region and a drain electrode electrically connected to the drain region. The passivation layer is formed on the data line and drain electrode. The pixel electrode is formed on the passivation layer, and electrically connected to the drain electrode. The data line overlaps the drain region.
Owner:PARK TAE HYEONG +2

Display panel

A display panel including a first substrate, a second substrate and a display medium is provided. The first substrate includes a base substrate, a gate, an active layer, a source, a drain, and a shielding structure. The gate is disposed on the base substrate. The active layer is electrically insulated from and disposed correspondingly to the gate. The source and the drain are electrically connected to the active layer. The shielding structure is disposed on the active layer and covers at least part of the active layer. The shielding structure includes a metal layer and an anti-reflection structure. The display medium is disposed between the first substrate and the second substrate.
Owner:INNOLUX CORP

Multi-domain vertical alignment liquid crystal display panel

A liquid crystal display panel is disclosed. The liquid crystal display panel includes a bottom substrate, a plurality of wires disposed on the bottom substrate, a plurality of pixel units electrically connected to the wires, a top substrate disposed opposite to the bottom substrate, a liquid crystal layer disposed between the top and bottom substrates, and at least one protrusion disposed on the top substrate corresponding to the wires formed between two adjacent pixel units. Each pixel unit includes a thin film transistor and a pixel electrode disposed on the bottom substrate. The pixel electrode is electrically connected to the thin film transistor, in which the pixel electrode has a plurality of main slits.
Owner:AU OPTRONICS CORP

AMOLED array substrate, producing method thereof and display apparatus

The present disclosure provides an active matrix organic light-emitting diode array substrate comprising: a substrate; a plurality of pixel units located on the substrate and arranged in an array, each of the plurality of pixel units comprising a thin film transistor, an organic light-emitting diode and a bottom plate of a storage capacitor; a pixel definition layer spacing apart two adjacent pixel units from each other; and a top plate of the storage capacitor provided on the pixel definition layer, the top plate of the storage capacitor being spaced apart from the bottom plate of the storage capacitor by the pixel definition layer. The bottom plate is arranged above a gate electrode of the thin film transistor and electrically connected to the gate electrode of the thin film transistor.
Owner:BOE TECH GRP CO LTD

Array substrate and display panel having the same with particular sensor electrodes

An array substrate includes a gate line, a data line, a thin-film transistor (TFT), a pixel electrode, a first sensor line, a second sensor line and a sensor electrode part. The TFT is electrically connected to the gate and data lines. The pixel electrode is formed in a unit area defined by the gate and data lines. The pixel electrode is electrically connected to the TFT. The first sensor line is substantially parallel with the gate line. The second sensor line is substantially parallel with the data line. The sensor electrode part is formed in the unit area and electrically connected to the first and second sensor lines. The sensor electrode part is adjacent to the pixel electrode in a large axis direction of the unit area.
Owner:SAMSUNG DISPLAY CO LTD

Display device

A display device is provided, including a backlight module and a liquid crystal display module. The backlight module is provided with a through hole. The liquid crystal display module includes a display panel and a lower polarizing film and an upper polarizing film arranged on two opposite sides of the display panel. A first via hole is in the lower polarizing film. A second via hole is in the upper polarizing film and arranged corresponding to the first via hole. A light shielding portion is arranged at two side edges of the second via hole. Such configuration avoids light leakage from the first via hole and the second via hole of the liquid crystal display module, and improves shooting performance of the camera module and also enhances market competitiveness.
Owner:WUHAN CHINA STAR OPTOELECTRONICS TECH CO LTD

Display device

The present invention provides a display device. The device is provided with an opening on a film structure on a back surface of a display panel, and a fingerprint recognition module is arranged in the opening, thereby reducing distance between the fingerprint recognition module and the back surface of the display panel, to improve fingerprint recognition accuracy. In addition, the fingerprint recognition module can also be located at any position in middle range of the display panel, and is not limited to the edge region at the bottom of the display panel, so as to improve a screen ratio of the display device.
Owner:WUHAN CHINA STAR OPTOELECTRONICS SEMICON DISPLAY TECH CO LTD

Organic light-emitting diode display panel and electronic device

An organic light-emitting diode (OLED) display panel includes a layered structure. The layered structure includes an emitter and a receiver. The emitter emits an infrared light, and the infrared light traverses a portion of the layered structure that is above the emitter, and the receiver receives the infrared light that traverses a portion of the layered structure that is above the receiver.
Owner:LENOVO (BEIJING) LTD

Display panel and method of manufacturing the same

A display panel includes gate lines extending in a first direction, a first column insulating layer between the gate lines, a gate electrode disposed on the first column insulating layer. The first column insulating layer, the gate lines, and the gate electrode are covered by a gate insulating layer. An active layer is disposed on the gate insulating layer. Source and drain electrodes are disposed above the active layer. Data lines are connected to the source electrode. A second column insulating layer is interposed between the data lines and includes a first contact hole to expose the drain electrode. A contact electrode is disposed in the first contact hole and connected to the drain electrode, a second contact hole is formed through a protective layer to correspond to the first contact hole, and a pixel electrode is connected to the contact electrode through the second contact hole.
Owner:SAMSUNG DISPLAY CO LTD

Pixel and organic light emitting display device having the same

A pixel includes first through sixth transistors and an organic light emitting diode. The first transistor includes a gate electrode connected to a first node, a first electrode, and a second electrode connected to a second node. The second transistor provides a data signal to the first node in response to a scan signal. The third transistor provides a first power voltage to the first transistor in response to an emission control signal. The fourth transistor provides a reference voltage to the first node in response to a voltage control signal. The fifth transistor provides the reference voltage to the first node in response to an initialization control signal. The sixth transistor provides an initialization voltage to the second node in response to the initialization control signal. The organic light emitting diode is connected between the second node and a second power voltage.
Owner:SAMSUNG DISPLAY CO LTD

Display substrate and method of manufacturing the same

A display substrate includes a data line, a gate line and a fan-out line. The data line is disposed in a display area of a base substrate and transfers a data signal to a switching element electrically connected to a pixel electrode. The gate line is disposed in the display area and transfers a gate signal to the switching element. The fan-out line is disposed in a peripheral area of the base substrate surrounding the display area, electrically connected to at least one of the data line and the gate line, and includes a plurality of conductive layers making contact with each other through a contact hole.
Owner:SAMSUNG DISPLAY CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products