Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

303results about How to "Reduce travel requirements" patented technology

Micromirror elements, package for the micromirror elements, and projection system therefor

InactiveUS6962419B2Minimize light diffractionContrast ratio is reducedTelevision system detailsProjectorsLight beamLight diffraction
In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the collection optics, in the present invention, micromirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, is not however, orthogonal to any substantial portion of sides of the individual micromirrors in the array. Orthogonal sides cause incident light to diffract along the direction of micromirror switching, and result in light ‘leakage’ into the ‘on’ state even if the micromirror is in the ‘off’ state. This light diffraction decreases the contrast ratio of the micromirror. The micromirrors of the present invention result in an improved contrast ratio, and the arrangement of the light source to micromirror array in the present invention results in a more compact system. Another feature of the invention is the ability of the micromirrors to pivot in opposite direction to on and off positions (the on position directing light to collection optics), where the movement to the on position is greater than movement to the off position. A further feature of the invention is a package for the micromirror array, the package having a window that is not parallel to the substrate upon which the micromirrors are formed. One example of the invention includes all the above features.
Owner:VENTURE LENDING & LEASING IV +1

Projection display

In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the collection optics, in the present invention, micromirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and / or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, is not however, orthogonal to any substantial portion of sides of the individual micromirrors in the array. Orthogonal sides cause incident light to diffract along the direction of micromirror switching, and result in light ‘leakage’ into the ‘on’ state even if the micromirror is in the ‘off’ state. This light diffraction decreases the contrast ratio of the micromirror. The micromirrors of the present invention result in an improved contrast ratio, and the arrangement of the light source to micromirror array in the present invention results in a more compact system. Another feature of the invention is the ability of the micromirrors to pivot in opposite direction to on and off positions (the on position directing light to collection optics), where the movement to the on position is greater than movement to the off position. A further feature of the invention is a package for the micromirror array, the package having a window that is not parallel to the substrate upon which the micromirrors are formed. One example of the invention includes all the above features.
Owner:TEXAS INSTR INC +1

Rear projection TV with improved micromirror array

InactiveUS20050007557A1Minimize light diffractionContrast ratio is reducedTelevision system detailsProjectorsLight beamLight diffraction
In order to minimize light diffraction along the direction of switching and more particularly light diffraction into the acceptance cone of the collection optics, in the present invention, micromirrors are provided which are not rectangular. Also, in order to minimize the cost of the illumination optics and the size of the display unit of the present invention, the light source is placed orthogonal to the rows (or columns) of the array, and/or the light source is placed orthogonal to a side of the frame defining the active area of the array. The incident light beam, though orthogonal to the sides of the active area, is not however, orthogonal to any substantial portion of sides of the individual micromirrors in the array. Orthogonal sides cause incident light to diffract along the direction of micromirror switching, and result in light ‘leakage’ into the ‘on’ state even if the micromirror is in the ‘off’ state. This light diffraction decreases the contrast ratio of the micromirror. The micromirrors of the present invention result in an improved contrast ratio, and the arrangement of the light source to micromirror array in the present invention results in a more compact system. Another feature of the invention is the ability of the micromirrors to pivot in opposite direction to on and off positions (the on position directing light to collection optics), where the movement to the on position is greater than movement to the off position. A further feature of the invention is a package for the micromirror array, the package having a window that is not parallel to the substrate upon which the micromirrors are formed. One example of the invention includes all the above features.
Owner:VENTURE LENDING & LEASING IV +1

Touch Screen Displays

We describe a projected capacitance touch screen sensing system comprising: a plurality of touch sensing circuit modules each configured to interpolate between sensed touching of a plurality of adjacent electrodes simultaneously and to output corresponding interpolated touch sense data at a resolution greater than that of a spacing between said electrodes; wherein each of said row and column electrodes has a break to divide the electrode into portions, one of said portions having an electrical connection at one side of the display screen, the other of said portions having an electrical connection at an opposite side of the screen; the sensing system comprising a controller coupled to touch sense data outputs of first to fourth touch sensing circuit modules, said controller configured to select interpolated touch sense data from one of first and second modules to provide row interpolated touch sense data, wherein selection of said first and second modules is responsive to interpolated touch sense data from said third and fourth modules, and wherein said controller is configured to select interpolated touch sense data from one of said third and fourth modules to provide column interpolated touch sense data, wherein selection of said interpolated touch sense data from one of said third and fourth modules is responsive to said interpolated touch sense data from said first and second modules.
Owner:FLEXENABLE LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products